
Grid programming with components:
an advanced COMPonent platform
for an effective invisible grid

© 2006 GridCOMP Grids Programming with components. A n advanced component platform for an effective invi sible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media , project n°034442)

GCM component programming with
ADL:

A Methodology using Grid IDE

Artie Basukoski,
J. Thiyagalingam

V. S. Getov

University of Westminster, London, U.K.
V.S.Getov@westminster.ac.uk

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 2

Outline

�Background
�Motivation
�GCM Reference Implementation
�Grid IDE – Strategy
�Grid IDE – Different Views
�Using GIDE – Illustrated with an example
�Legacy Code Wrapping
�Further Work and Conclusions

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 3

Background: Building Grid Applications

� Proprietary middleware (Globus 1.0, Legion, Unicore, …)
� Resources exposed through an API
� Non interoperable !

� Object-based middleware
� Resources exposed through distributed objects (Java, CORBA,

etc.)
� Some interoperability issues with the communication protocols

(CORBA IIOP)
� Not anymore at the top of the hype !

� Service-based middleware
� Resources exposed through services
� Strong support from the Industry
� At the top of the hype !
� Need some extensions (stateful Web services)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 4

Motivation

� “Grid Everywhere” and Pervasive Computing
strategies demand truly dynamic software
infrastructures.

� Developing Grid Applications with GCM-specific
programming model requires an intuitive form of
assistance

� Under GCM model, applications are considered as
compositions of components

� An integrated development environment to facilitate
development/composition, deployment and monitoring is
essential

� GridCOMP Grid IDE (GIDE) extends the capabilities of
Eclipse to support GCM-based development.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 5

One of the Main Research Challenges for
Future Grids

To develop the software design and
development methodology of a generic
component-based Grid platform for both
applications and tools/systems to have a
single, seamless, “invisible” Grid software
services infrastructure.

Possible Solution:

Grid Component Model (GCM)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 6

GCM Reference Implementation

� 1 - Primitive Component Programming

� 2 - Legacy Code Wrapping, Interoperability

� 3 - Composition and Composites, Deployment

� 4 – Autonomic features

� 5 – IDE for GCM (Composition GUI, etc.)

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 7

GridCOMP: ComponentGridCOMP: Component --Centric ProblemCentric Problem --toto --
Solution PipelineSolution Pipeline

�Main issues: composition and dynamic
properties –
deployment, monitoring and steering

Monitor and
Steer

DeploymentComposition
Programming
Model - GCM

Applications
(Algorithms)

Grid Interactive Development Environment

Metadata Description incl. ADL, etc.

Obtaining the
Solution

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 8

Strategy: Eclipse Framework for GIDE

�Simplify complexity through graphical
composition/tools.

�But, allowing ONLY graphical composition
can be inflexible and inefficient.

�Support for 3 levels of Development.
� Graphical Composition.
� Based on GCM and Proactive.
� Java.

�Seamless integration with Eclipse.
� Widely supported. Many existing plugins (IC2D).

� “Lets not restrict developers.”

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 9

Grid IDE Core Block Diagram

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 10

Development Environment Design

� Composition Perspective
� Graphical but also allow code editing.

� Deployment Perspective.
� Drag/drop to scheduler.
� Launch/Stop through right click actions.

� Resource Monitoring Perspective.
� Host View
� Resource List View.

� Component Monitoring/Steering Perspective.
� Graphical display of Component status.
� Relocation via drag/drop
� IC2D already does graphical monitoring of hosts, JVMs and

Active Objects.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 11

GIDE – An Insight into composition

� GIDE builds on GMF for providing graphical front-end
� The IDE includes

� Built-in ADL parser
� Verifier
� Diagram-generator
� Semantic-Generator
� ADL-exporter

� ADL files are verified, parsed and then appropriate internal
representations of compositions (semantic representation)
and diagrams are generated.

� GIDE delegates the user-interactions to these internal
representations

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 12

Domain model

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 13

GIDE – An Insight in to composition …

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 14

Data Centre Environment

�Separate RCP application.
�Clear and fixed functional views.

�Deploy
�Resource Monitor
�Component Monitor and Steer

�Restrict personalisation.
�Data Centres have high rates of turnover.
�High demand means generally low expertise.

�“Lets protect operators from the details.”

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 15

Composition – An example

�This example builds on Use-Case 5
�The use-case include three components –

two primitives and one composite
�The composition is expressed as an ADL file
�The tutorial will illustrate the general usage

and then how we could import compositions
from ADL files

�This is based on current version – whose
features are evolving

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 16

User Interface of the Composition Editor

Project
Files

Drawing
Canvas

Tool and
Component
Palette

Component
Properties

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 17

Import and Editing Views

● Create a new Java Project to start with.

This should bring-in the necessary files to the project

● Now create an “Other Project” – GIDE-Composition

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 21

● Name the Composition Project

● This should create two files (semantic and diagram)
● Should bring the canvas for composition

● Drag and
drop
component
from toolbox

● Change
properties

● Create a connection between them by using the
link tool

● Zoom in, if necessary

● Once created, select and arrange them for better
layout

The auto-arrangement is done by GMF-backend

● To Import ADL Files, select Import from the file
Menu and select the file for import.

● Select the project space to import into

The file will be imported along with the
semantic/diagram files

Diagram will be rendered automatically

● The underlying ADL file can be edited

● Composite components can also be imported
by selecting the composite ADL file

Resource Monitoring

� Enables an operator to
dynamically view
the underlying resources prior
to deployment

� Implemented using a highly
scalable, high-performance
and platform
independent library

� Permits remote monitoring

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 36

Approaches for componentising legacy code

� The current version of GIDE has no
direct support for legacy code-
wrapping

� Support for such componentisation
and code-wrapping is essential to
support legacy applications
� Current focus is on GENIE – Grid

Enabled Integrated Earth System
Modelling : componentised and
Grid Enabled

� Alternative approach is to hand-
tune the code to comply with the
underlying model – JEM3D

� Future version of the GIDE may
support GCM-compliant code
wrapping

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 37

Some Future Goals

�Utilise the Eclipse GMF approach for
providing highly interactive development IDE

�Support and different interface types
�Improved support for ADL files
�Implement and Integrate component

monitoring
�Optional: model verification, improved context

support for managing ADL files

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 38

Conclusions

� Implemented an initial version of the prototype of
GIDE to support GCM

�Adopted GMF approach and re-engineered the
overall design

� Integrated platform supports better resource
monitoring

�Further work is needed to align with production
usage

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 39

END

�Questions

