
Project no.FP6-034442

GridCOMP

Grid programming with COMPonents: an advanced component platform for an
effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.NFCF.05 –NFCF tuned prototype and final documentation

Due date of deliverable: December 1st, 2008

Actual submission date: January 19th 2009

Start date of project: 1 June 2006 Duration: 33 months

Organisation name of lead contractor for this deliverable: UNIPI

Project co-funded by the European Commission within the Sixth Framework Programme
(2002–2006)

Dissemination level
PU Public PU

Keyword list: autonomic management, component controller, GMC, task farm
Responsible Partner: UNIPI

MODIFICATION CONTROL
Version Date Status Modifications made by

0 1 December 2008 Draft Sonia CAMPA
1 5 December 2008 Draft Marco ALDINUCCI
2 10 December 2008 Draft Sonia CAMPA
3 10 December 2008 Draft Marco ALDINUCCI
4 27 December 2008 Draft Sonia CAMPA
5 8 January 2009 Final Marco ALDINUCCI

Deliverable manager

• Marco Aldinucci, UNIPI

List of Contributors

• Sonia Campa, UNIPI

• Patrizio Dazzi, ISTI-CNR

• Nicola Tonellotto, ISTI-CNR

• Giorgio Zoppi, UNIPI

List of Evaluators

• Françoise Baude, INRIA

• Rajkumar Buyya, U. MELBOURNE

Executive Summary The current deliverable is intended to 1) describe latest advances of
the GCM prototype, which mainly regard advanced autonomic features such as the enhancements
to QoS contract expressiveness, the dynamic injection of QoS contracts into the managers, the
usage of parametric ADLs and composite component to instance behavioural skeletons; and 2)
serve as step-by-step tutorial describing how to develop a GCM autonomic applications by fully
exploiting the power of behavioural skeletons. A release of the GCM autonomic component
framework is associated with this deliverable (D.NFCF.05-code).

This deliverable concludes the “Non Functional Component Features” deliverable series which
have started with the D.NFCF.01 [3] that describes the architectural specification of a framework
supporting the GCM autonomic component model [7]. Then, the deliverable D.NFCF.02 [4]
has introduced an early prototype implementing the basic features of that specification. This
prototype has been enriched with autonomic policies and methodologies to derive performance
models in D.NFCF.03 [5] that in turn has led to the refined prototype (with early documentation)
that has been described in D.NFCF.04 [6].

GridCOMP FP6-034442 page 2 of 38 D.NFCF.05

Contents

1 Introduction 4
1.1 Structure of the code . 5

2 Getting started 6
2.1 Platform requirements . 6
2.2 Installing the code . 6
2.3 Deployment files and compilation . 7
2.4 Running an example . 7

3 Non-Functional behaviour: the QoS contract 8
3.1 Structure of a QoS contract . 8
3.2 Predefined manager operations . 10
3.3 How to change the contract at running time . 11

4 The data parallel behavioural skeleton (map) 12
4.1 ADL description of the skeleton . 12
4.2 How to use the data parallel skeleton . 13
4.3 How to write a parametric code . 15
4.4 Stateful data parallel skeleton . 16

4.4.1 Setting up a worker for autonomic reconfiguration 16
4.4.2 The reconfiguration process . 17

4.5 Stateless computation . 17
4.6 Composite workers . 17
4.7 Observable events in the map behavioral skeleton 18
4.8 Guidelines for using the stateful data parallel skeleton 20
4.9 Guidelines for using the stateless data parallel skeleton 20

5 The Farm behavioural skeleton 21
5.1 ADL description of the skeleton . 21
5.2 How to use the farm skeleton . 21
5.3 Composite workers . 23
5.4 Observable events in the farm behavioral skeleton 25
5.5 Guidelines for using the farm skeleton at active level 25

6 Multilevel management 26
6.1 Not functional interfaces . 26
6.2 Defining and implementing a top-manager . 27
6.3 Controlled components . 28
6.4 Father-child bindings . 31
6.5 Driving the top-manager behavior . 31
6.6 Another example . 33
6.7 Guidelines for writing a top-manager based application 36

7 Conclusion and work in progress 37

GridCOMP FP6-034442 page 3 of 38 D.NFCF.05

1 Introduction

In this tutorial we present recent advances of the Grid Component Model (GCM)[7, 9] and its
reference implementation. Main advances with respect to previous milestone [6] are concerned
with:

• the design and implementation of autonomic managers and QoS models driving them;

• the possibility of dynamically inject QoS contracts into the managers;

• the refinement of behavioural skeleton templates and their parametric description with
GCM ADL;

• the generalisation of behavioural skeletons, which can now be instanced with both primitive
and composite components.

• the introduction of management overlay and distributed management (on-going activity,
not fully described in the deliverable).

In the previous tutorial, we gave an initial perspective about the usage of two specific be-
havioural skeletons. They can be used in either a passive and active fashion, which respectively
model user-driven steering and autonomic adaptivity. The reference implementation of GCM has
been developed on top of the ProActive 3.9 middleware; the advances presented in this document
are related to same version of the middleware. The porting of GCM on top of Proactive 4.0 is
currently ongoing.

We recall that behavioural skeletons are high-order, parametric component assemblies. These
skeletons can be equipped with specialised management strategies driven by either predefined or
user-defined performance goals [1, 2]. The advances described in the rest of the document involve
the farm and data parallel skeletons, which are instances of the functional replication skeleton
family, i.e. the class of computation patterns that enable the application designer to easily exploit
a dynamically variable number of replicas of a guest (primitive or composite) component.

The farm skeleton realises the parallel computation of independent tasks parallel pattern,
whereas the data parallel skeleton exploit the homonym pattern. These skeletons are realised
in GCM as particular composite components that exploit a set of autonomic controllers imple-
menting the protocols for the correct dynamic adaptation of the skeleton (e.g. life cycle, content,
binding, etc.). In particular, adaptation operations are exposed by the Autonomic Behaviour
Controller (ABC) of the component [2]. These operations can be used to dynamically steer the
component behaviour (i.e. passive autonomicity).

Behavioural skeletons (a.k.a. BeSke) are obtained by equipping skeletons with an autonomic
manager (see Fig. 1) exploiting a proper management goal. Truly autonomic components can
be obtained as instances of the behavioural skeletons.

The autonomic management happens according to four successive phases. The monitor phase
provides mechanisms to collect, aggregate, filter and correlate details from managed resource
(memory, work load, remote resources, etc.); the analyse phase provides mechanisms to observe
and analyse behavioural or structural changes (for example a change in the work load of a given
machine involved in the application execution); the plan phase provides mechanisms to create
or select a procedure to change the current status of the observed resources; the execute phase
applies such procedures by triggering operations directly at the passive level. All these phases
are conditioned by a (set of) goal that a user could specify by means of a Quality of Service
(QoS) contract.

In [6] we showed how farm and data parallel skeleton can be instanced in a set of use-cases
both at the passive and the active level by providing the manager with a set of goals defined
by the user in the form of a contract file. In this tutorial we will not focus on specific use-
cases but will provide some programming guidelines to describe, extend and instance parametric
behavioural skeleton, having also the possibility to change the QoS contract while the application
is running.

GridCOMP FP6-034442 page 4 of 38 D.NFCF.05

Figure 1: Autonomic computing control loop

1.1 Structure of the code

The framework code is distributed as a zipped archive whose content is summarised in Table 1.
The archive contains four main directories (Eclipse projects):

• GridComp-Core: contains all the packages representing the core of the framework: inter-
faces and abstract classes of controllers, managers, autonomic operations, etc.

• GridComp-Manager: contains all the classes needed for the implementation of the autonomic
manager.

• GridComp-Farm: contains all the interfaces, abstract and implementation classes related to
the farm behavioural skeleton and its manager implementation.

• GridComp-DataParallel: contains all the interfaces, abstract and implementation classes
related to the data-parallel behavioural skeleton and its manager implementation.

All these directories are linked to the GridComp-Libs directory collecting all the ProActive,
Fractal and Java library needed to compile and run the code. The distribution directory is
used to store all the jar packages produced during the compilation.
The GridComp-Example directory contains a set applications exemplifying GCM usage. Those
examples show how to develop an application by using farm, data parallel in passive and active
fashion, using primitive and composite workers, exploiting centralised or distributed (many-level)
management. All the examples are variation of the following base applications:

• Mandelbrot set: it’s the classic Mandelbrot application exploiting pure task parallelism in
which a set of independent tasks are computed at different level of complexity by a set of
processing elements represented by the workers of a farm.

• π calculus: as the previous example, this application adopts a task parallelism patterns
but use a functional feedback in a cyclic graph fashion.

• Stateful data parallelism: it is a data parallel application in which the content of the
input data is partitioned and computed by the set of worker components, which may have
an internal state provided the worker components expose a method for importing and
exporting the internal state. In case of skeleton re-configuration, the state is re-distributed
under the coordination of the manager.

• Stateless data parallelism: the example is mock-up of the IBM use case [10]. Here, worker
components are assumed to be stateless (or including a not disclosed state), thus in the case

GridCOMP FP6-034442 page 5 of 38 D.NFCF.05

GridComp-Core implementation of the framework core
− gridcomp.* GCM specific classes
− org.objectweb.proactive.* Patch to Proactive classes (overloaded)

GridComp-Manager abstract classes, interfaces and ADL files for implementing the
manager

GridComp-Farm abstract classes, interfaces and ADL files for implementing the
farm behavioural skeleton; prototype implementation of a farm
behavioural skeleton supporting active autonomicity

GridComp-DataParallel abstract classes, interfaces and ADL file for implementing the data
parallel behavioural skeleton; prototype implementation of a data
parallel behavioural skeleton supporting active autonomicity

GridComp-Example
− active.mandelbrot evaluation of the Mandelbrot set (autonomic farm)
− passive.mandelbrot evaluation of the Mandelbrot set (adaptive farm)
− active.pi evaluation of the π approximation (autonomic farm)
− passive.pi evaluation of the π approximation (adaptive farm)
− statelessmap data parallel use-case supporting functional reconfiguration (au-

tonomic stateless data parallel)
− statefulmap data parallel use-case with functional reconfiguration (autonomic

stateful data parallel)
− active.twolevels evaluation of the Mandelbrot set (autonomic farm with two levels

of managements)
− stateful.twolevels data parallel use-case supporting functional reconfiguration (au-

tonomic stateless data parallel with two levels of managements)
− compworker.farm evaluation of the Mandelbrot set (adaptive farm with composite

workers)
− compworker.map data parallel use-case with functional reconfiguration (autonomic

stateless data parallel with composite workers)

GridComp-Dicom Dicom use case example for the recognition of X-ray images

Table 1: Content of the framework distribution.

of re-configuration the manager does not provide any automatic way to redistribute the
worker state. In case the worker components exhibit a not disclosed state, the redistribution
of state can be managed by way of functional interfaces, i.e. providing components with
the proper functional ports to manage it.

• Dicom: Implements a sequence of (parallel) image filters to highlight possible neoplasms
in a stream of x-ray images recorded after the injection of a contrast fluid (e.g. mammog-
raphy).

2 Getting started

2.1 Platform requirements

In order to compile and run the framework you will need Java 1.5 or upper versions. ProActive
3.9 and all the auxiliary libraries are provided within the zipped archive file.

2.2 Installing the code

In order to install the code, you need to enter your working directory and type:

~ > tar -xzvf gridcomp.tar.gz

GridCOMP FP6-034442 page 6 of 38 D.NFCF.05

~ > cd gridcomp/gridcomp

~/gridcomp/gridcomp > ls

Doc GridComp-DataParallel GridComp-Farm build.xml

G5Ktools GridComp-Dicom-UseCase GridComp-Libs commons.xml

GridComp-Core GridComp-Examples GridComp-Manager distribution

Opening the archive will lead to the creation into the working directory of a folder called
gridcomp containing the framework implementation directory, all the files for supporting com-
pilation and running, as well as a Doc folder in which a copy of this tutorial can be found.

If you are using Eclipse to work on the code, once you have created your own project into the
workspace, you can import the folders through the Existing Project into Workspace option.

2.3 Deployment files and compilation

The first step needed to compile the code is to define the correct path in the deployment files.
The reference deployment file for a local run is the local-deployment.xml file in the GridComp--
Examples folder, that lists the virtual nodes allocated in the examples and the mapping between
virtual nodes and JVMs, JVMs and target architecture.
The reference deployment file for a remote run is the distrib-deployment.xml file. This file
must be edited in order to customise it to the particular cluster or grid on which it will be used
for the run. In particular, the user should update the NFSHOME variable in order to point to the
$HOME/gridcomp folder, the REMOTE USER variable in order to represent the user account name,
the JAVA HOME and the REMOTE JAVA HOME in order to directly point to the Java executable in
the system.

Moreover, the user is asked to provide a list of remote hosts and to bind it in the remote deploy-
ment file with the includePropertyFile tag. Since we have realised a complete independence
between the remote deployment file and the target architectures, the distrib-deployment.xml
file is parametric with respect to the name of the hosts involved in the execution. As a result,
in the mapping between each processDefinition target and a given host name on which a
certain JVM will be activated (via a ssh process), the associated host is provided by the pa-
rameter ${HOST ID x}, where x ∈ [1,K] (being K the number of processDefinition tags). At
compile time, one of the hosts listed in the file specified by the includePropertyFile tag will
be assigned to each of these variables. In our distribution, the file listing the hosts is represented
by the cores-pianosa.properties file and its content is just a trivial list of hosts, one for each
line.

The compilation process is supported by the ant compiling system. Thus, in order to compile
the framework, it suffices to type

~/gridcomp/gridcomp > ant

which will invoke the compilation steps programmed into the build.xml file.
If the user wants to compile one of our example application only, he/she need to enter the

directory GridComp-Examples and to call the compilation process from the related ant target,
thus:

~\gridcomp > cd GridComp-Examples
~\gridcomp\GridComp-Examples > ant build-passive-mandelbrot

However, when invoked without parameters, ant will compile all the provided example, by de-
fault.

2.4 Running an example

Once the user has compiled the code, she/he can simply invoke its execution through the ant
mechanism. We provide two type of deployment descriptors for driving the execution phase: the
local-deployment.xml file that allows to deploy the application on the user local machine and

GridCOMP FP6-034442 page 7 of 38 D.NFCF.05

RUN TARGET ::= DEPLOY TYPE ◦ ADAPT MODEL ◦ APPLICATION |
DEPLOY TYPE ◦ ADAPT MODEL ◦ APPLICATION ◦ EXTRA CONF

DEPLOY TYPE ::= local-deploy | distrib-deploy | g5k-deploy
ADAPT MODEL ::= passive | active
APPLICATION ::= mandelbrot | pi | stateless map | stateful map

EXTRA CONF ::= twolevels | compworker | varcon | vardataset

Table 2: General structure of deployment targets.

local-deploy-active-mandelbrot

local-deploy-active-mandelbrot-compworker

local-deploy-active-mandelbrot-twolevels

local-deploy-active-pi

local-deploy-active-stateful map-twolevels

local-deploy-active-stateful map-varcon

local-deploy-active-stateful map-vardataset

local-deploy-active-stateless map-compworker

local-deploy-active-statelessmap

local-deploy-passive-mandelbrot

local-deploy-passive-pi

distrib-deploy-active-mandelbrot

distrib-deploy-active-mandelbrot-compworker

distrib-deploy-active-mandelbrot-twolevels

distrib-deploy-active-pi

distrib-deploy-active-stateful map-varcon

distrib-deploy-active-stateful map-vardataset

distrib-deploy-active-stateless map

distrib-deploy-active-stateless map-compworker

distrib-deploy-passive-mandelbrot

distrib-deploy-passive-pi

g5k-deploy-active-mandelbrot

g5k-deploy-active-stateful map-vardataset

Table 3: Predefined deployment targets.

the distrib-deployment.xml descriptor that is configured to deploy the application on a cluster.
In both cases, she/he simply need to invoke the execution process on the target representing the
application she/he is interested in.
Table 2 describes the general grammar of a deployment (and run) targets; Table 3 summarises
all the predefined targets for the run of examples provided with the code. As an example, in
order to launch the evaluation of the Mandelbrot set at the active autonomicity level, type:

~/gridcomp/GridComp-Examples > ant local-deploy-active-mandelbrot

3 Non-Functional behaviour: the QoS contract

Behavioural skeletons represent an easy and abstract way to express well-known parallel com-
putation patterns by using predefined composite component. The main advantage of using such
kind of component is that the knowledge behind their behaviour specification allows to predefine
autonomic operation in order to adapt the component structure and/or behaviour depending on
events triggered by the external or internal environment.
All our behavioural skeletons come along with a predefined set of autonomic controllers ensuring
the passive level of autonomicity and a version of the autonomic manager related to the specific
skeleton. The manager is a component implementing non-functional features. It implements the
autonomic cycle (see Fig.1) by evaluating the current behaviour of the application on the basis
of a set of requirements described by the user through the QoS contract.

3.1 Structure of a QoS contract

The type of information the manager has to check is provided through the quality of service
(QoS) contract. The contract is a set of requirements that the user needs to be satisfied dur-
ing the application lifetime and includes performance ones as well as other qualitative and/or
quantitative information about resource consumption, data sizes, network bandwidth or latency,
etc.

GridCOMP FP6-034442 page 8 of 38 D.NFCF.05

The contract is represented by a list of when <condition> then <action> JBoss rules [8] struc-
tured in the following way:

rule "Symbolic rule name"

when

Bean1: <condition_1>

Bean2: <condition_2>

...

BeanN: <condition_N>

then

action_1;

action_2;

...

end

The role of the manager is to periodically evaluate specific monitored conditions (condition 1,
. . . , condition N) each one encapsulating quantitative information into a (set of) Java Bean
(Bean1, . . . , BeanN), at each AutonomicLoopCycle seconds (an attribute of the manager). If
one or more hold, the evaluation fires the specific autonomic action related to the occurred
condition. An example of a QoS contract is given below:

package gridcomp.computeTaskMonitor

import gridcomp.manager.beans.*;

import gridcomp.manager.operations.*;

import gridcomp.operation.*;

import gridcomp.example.active.mandelbrot.ManagersConstants;

[methodMonitor="drawLine"]

rule "CheckRateLow"

salience 1

when

$departureBean : DepartureRateBean(value < ManagersConstants.FARM_LOW_PERF_LEVEL)

$parDegree: NumWorkerBean(value < ManagersConstants.FARM_MAX_NUM_WORKERS)

then

$departureBean.setData(new Integer(2));

$departureBean.fireOperation(ManagerOperation.ADD_EXECUTOR);

end

rule "CheckRateHigh"

salience 0

when

$departureBean : DepartureRateBean(value > ManagersConstants.FARM_HIGH_PERF_LEVEL)

$parDegree: NumWorkerBean(value > ManagersConstants.FARM_MIN_NUM_WORKERS)

then

$departureBean.fireOperation(ManagerOperation.REMOVE_EXECUTOR);

end

rule "StartingParDegree"

salience 10

when

$parDegree: NumWorkerBean(value < 10)

then

System.out.println("Manager: Starting farm with 10 workers");

$parDegree.setData(new Integer(10));

$parDegree.fireOperation(ManagerOperation.ADD_EXECUTOR);

$parDegree.fireOperation(ManagerOperation.BALANCE_LOAD);

end

In this contract (see gridcomp/example/active/mandelbrot/adl/rules.drl), the manager
checks if any of the rules in the QoS contract applies each time the method marked in the contract

GridCOMP FP6-034442 page 9 of 38 D.NFCF.05

is evaluated. If a condition holds, the rule is executed. In this example, the “StartingParDegree”
rule is applied at the first activation of the manager (i.e. immediately after the start of the
applications) since all the farm behavioural skeleton always starts with one worker1 and this rule
exhibits the highest salience. The effect of the rule consist in raising the number of workers up
to 10 workers. After the first round, the the two rules “CheckRateLow” and “CheckRateHigh”
respectively check that the “DepartureRateBean” value (i.e. the throughput) remain within the
FARM LOW PERF LEVEL and FARM HIGH PERF LEVEL. In the case the first (second) bound is vio-
lated, and the farm has not yet reached the FARM MAX NUM WORKERS (FARM MIN NUM WORKERS),
the manager ADD EXECUTOR (REMOVE EXECUTOR) a number of workers to the farm (2 in the ex-
ample due to the setData(new Integer(2))). The ADD EXECUTOR operation should be followed
by a BALANCE LOAD operation. The BALANCE LOAD operation is not strictly required after the
REMOVE EXECUTOR operation since the tasks queued in the removed worker are anyway distributed
to the remaining workers.

3.2 Predefined manager operations

The application developer can exploit the manager functionality by simply writing a QoS contract
as a list of JBoss rules. This requires the knowledge of adaptation operations and monitor
variables exposed by the particular component. Notice however that, if the component is an
instance of a behavioural skeleton (BeSke), these operations and variables are typically predefined
(and documented) as part of the BeSke definition.

The set of autonomic operations (i.e. the actions taken in accordance with given conditions)
currently provided are listed in gridcomp.manager.operation and are:

• ADD EXECUTOR: adds a new (local or remote) executor to the skeleton configuration (all
BeSke).

• REMOVE EXECUTOR: removes a (local or remote) executor from the skeleton configuration
(all BeSke).

• BALANCE LOAD: balances the load of tasks to be executed by a set of executors by reassigning
them with respect to the queue distribution defined by the ProActive framework (farm
only).

• RAISE VIOLATION: signals that a violation contract occurred (all BeSke).

• SETUP: defines new configuration features of the skeleton (all BeSke).

• GET EXECUTORS: provides the number of executors currently involved in the computation
(all BeSke).

• PUSH CONTRACT: dynamically push a new contract to another manager (used for multi-level
management and management overlay, not detailed in this deliverable).

• PUSH OBJECT: dynamically push a new set of bounds to another manager (they are related to
a contract installed in another manager; used for multi-level management and management
overlay, not detailed in this deliverable).

• PUSH LIST: dynamically push a list of new contracts or bounds to a list of managers (used
for multi-level management and management overlay, not detailed in this deliverable).

1This restriction is due to the absence of a unicast port in the implementation of Proactive 3.9. This limitation
cannot be overcome simply adopting Proactive 4.0 since it implements the unicast port as scheduling policy of
the scatter port that can be used only for List data type whereas the farm is supposed to work for any input data
type. The current implementation dynamically overload a standard server port with a WP3 implementation of
the unicast port thus any farm should start with a standard server port that can bind only one worker (more
workers can be added after the overloading is completed, i.e. at run time).

GridCOMP FP6-034442 page 10 of 38 D.NFCF.05

The actions are triggered via the evaluations of Java Beans, as required by the JBoss rules engine.
Each time the manager is activated, one or more events (the ones cabled in the implementation of
that particular manager) are observed by its monitoring system and for each event a quantitative
value is recorded in the related Java bean. As soon as one or more bean values collectively satisfy
a when <condition>, the related action are fired and the operations executed.
The set of currently predefined beans are discussed in Sec. 5.4 and Sec. 4.7. Notice that the
user can statically extend the set of beans to access to more monitor data. The introduction of
new beans requires a good knowledge of GCM run-time support implementation (see GCM user
classification [2]).

3.3 How to change the contract at running time

As the application starts, a contract must be provided to the manager. Each behavioural skeleton
accepts a path to the initial contract file among his parameters. Passing such an argument can
be statically done by simply setting the proper pair in the hash map used to define the context
of the application component. At instancing time, the value of the key will be passed to the
AutonomicManagerAttributeController of the manager.
In other words, the user will need to define a java.util.HashMap and to insert the key contract-
File associated to the QoS contract path.

Map<String, Object> context;

context = new HashMap<String, Object>(1);

// args[0] points to the QoS contract file

context.put("contractFile", args[0]);

String rootADL = "gridcomp.example.active.pi.adl.root";

Factory fact = gridcomp.adl.FactoryFactory.getFactory();

Component root = (Component) fact.newComponent(rootADL, context);

However, a user could need to change a contract at run time and it can be done in two different
ways. The first is given by the explicit interaction with the attribute controller responsible for
setting the QoS file name. Thus, it suffices the user inserts the following piece of code, where
manager represents the Component instance referencing the manager component:

AutonomicManagerAttributeController amac;

amac = (AutonomicManagerAttributeController) manager.getFcInterface("attribute-controller");

amac.setPerformanceContractFile("<path to the new QoS file>");

A more conventional strategy is to bound the commit-contract interface exposed by the
manager and to send the new contract path by calling it. Thus, the preceeding piece of code
would be replaced by

AutonomicServerManager asm = null;

asm=(AutonomicServerManager) manager.getFcInterface("commit-contract");

asm.commitContract(newcontractPath);

GridCOMP FP6-034442 page 11 of 38 D.NFCF.05

4 The data parallel behavioural skeleton (map)

In this section we will show how an application exploiting a data parallelism pattern can be programmed
with the related GCM behavioural skeleton into the framework. A data parallel skeleton can be config-
ured in order to exploit a stateful or a stateless computation. A stateful computation is a computation in
which each worker, that represents the computational unit of the skeleton, manages an internal state that
remains consistent between successive reconfigurations of the skeleton. On the other hand, a stateless
computation is a computation in which the workers do not keep a permanent state among successive
reconfigurations.

4.1 ADL description of the skeleton

The data parallel behavioural skeleton is depicted in Fig. 2.

S

AM

ABC

worker

ABC

S

Figure 2: Stateful data-parallel BeSke structure.

The composite component representing the skeleton has been designed focusing on the following
requirements:

• all the provide ports of the composite must be multicast ports

• the user interfaces that define the signature of each multicast port can adopt all the distribu-
tion policies provided by ProActive (BROADCAST, ONE TO ONE, ROUND ROBIN). However, in order
to define a port exploiting the pure data parallel behaviour (i.e. the input list is partitioned
among the available processing elements of the skeleton), the port must be configured to adopt
the gridcomp.map.port.MapDispatch distribution policy.

• all the multicast port belonging to the composite are managed by the manager and the autonomic
controller

• it is parametric with respect three parameters provided at instantiation time:

1. the package name of the worker ADL file

2. the input QoS contract path

3. the path to the deployment file

The data parallel behavioural skeleton comes in two versions, both available from the package
gridcomp.map:

• the ADL file mapSingle.fractal describes a data parallel skeleton exposing just a multicast port
adopting the MapDispatch distribution policy.

• the ADL file mapInitQuery.fractal describes a data parallel skeleton exposing two multicast ports
both adopting the MapDispatch distribution policy. The first port is thought as an initialisation
port, since it distributes the input data set to the available workers in a persistent manner, i.e.
the partition becomes part of the worker state; the second port is thought as a port to be invoked
to query in parallel each worker that will presumably access its data partition (i.e. its state) to
answer.

GridCOMP FP6-034442 page 12 of 38 D.NFCF.05

Both versions are parametric with respect to the package name of the worker ADL file, the initial QoS
contract that will be given as input to the manager and the path to the deployment file in use.

A data parallel skeleton encapsulates a manager component who is responsible of all the non-
functional features of the skeleton. Thus, its influence on the composite behaviour is completely in-
dependent from the user knowledge.

4.2 How to use the data parallel skeleton

In order to instantiate a map skeleton, the user has simply to extend the mapInitQuery.fractal file
(or the mapSingle.fractal, depending on his needs), in order to provide the initial number of workers
encapsulated into a starting configuration of the skeleton and the bindings between the subcomponents
and its internal interfaces. As an example, the following usermap.fractal file

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.statefulmap.adl.usermap"

extends="gridcomp.map.mapInitQuery(gridcomp.example.statefulmap.adl.worker,

src/gridcomp/example/statefulmap/adl/rulesWithControl1.drl,

local-deployment.xml)">

<!-- the initial set of workers -->

<component name="server0"

definition="gridcomp.example.statefulmap.adl.worker"/>

<component name="server1"

definition="gridcomp.example.statefulmap.adl.worker"/>

<!-- bindings between the internal interfaces and workers interfaces -->

<binding client="this.multicastServerItf-01"

server="server0.serverItf-worker-01"/>

<binding client="this.multicastServerItf-01"

server="server1.serverItf-worker-01"/>

<binding client="this.multicastServerItf-02"

server="server0.serverItf-worker-02"/>

<binding client="this.multicastServerItf-02"

server="server1.serverItf-worker-02"/>

<virtual-node name="map-node" cardinality="single"/>

</definition>

extends the two port version of the data parallel behavioural skeleton, being parametric with respect
to the three arguments mentioned above that are passed to the map instantiation in the line

extends="gridcomp.map.mapInitQuery(gridcomp.example.statefulmap.adl.worker,

src/gridcomp/example/statefulmap/adl/rulesWithControl1.drl,

local-deployment.xml)"

In this example, the user-defined extension simply adds to the basic definition of the skeleton, two inner
components that will represent the initial workers at launching time.

Of course, each worker will be a component exposing two interfaces at least, one for each internal
port of the composite to which they will be bound, as the example below:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

GridCOMP FP6-034442 page 13 of 38 D.NFCF.05

<definition name="gridcomp.example.statefulmap.adl.worker"

extends="gridcomp.map.controller.DPWorkerController"

arguments="vn-id">

<interface signature="gridcomp.map.controller.operation.ReconfigSupport"

role="server"

name="reconfig"/>

<!-- will be bound to the init multicast port -->

<interface signature="gridcomp.example.statefulmap.impl.ServerInitItf"

role="server"

name="serverItf-worker-01"/>

<!-- will be bound to the query multicast port -->

<interface signature="gridcomp.example.statefulmap.impl.ServerQueryItf"

role="server"

name="serverItf-worker-02"/>

<content class="gridcomp.example.statefulmap.impl.ServerImpl"/>

<!-- parametric id for the virtual node -->

<virtual-node name="slave-node-${vn-id}" cardinality="single" />

</definition>

Each component representing a worker for a data parallel behavioural skeleton requires that two condi-
tions are always satisfied:

1. the definition extends the DPWorkerController.fractal file: such extension enriches the compo-
nent definition with a set of pre-defined controllers and interceptors providing the passive auto-
nomicity level and all the needed hooks with the skeleton manager to interact with the worker;

2. the ADL description takes the destination virtual node as an input parameter through the argu-
ment vn-id, assuming that the virtual nodes are differentiated in their names by numeric suffixes
(they are labelled as slave-node-1, slave-node-2, etc.).

Thus, from the user point of view, the root application can be written as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.statefulmap.adl.testcase"

extends="gridcomp.CompositeController">

<interface signature="gridcomp.map.port.MapInitInterface"

role="server"

name="runTestItf-01"/>

<interface signature="gridcomp.map.port.MapQueryInterface"

role="server"

name="runTestItf-02" />

<!-- the map -->

<component name="multicastComposite"

definition="gridcomp.example.statefulmap.adl.usermap"/>

<!-- the bindings -->

<binding client="this.runTestItf-01"

server="multicastComposite.multicastServerItf-01"/>

<binding client="this.runTestItf-02"

server="multicastComposite.multicastServerItf-02"/>

<!-- maybe other components and/or interfaces -->

GridCOMP FP6-034442 page 14 of 38 D.NFCF.05

<controller desc="composite"/>

<virtual-node name="root-node" cardinality="single" />

</definition>

The ADL file testcase.fractal represents a composite extending the predefined composite named
gridcomp.CompositeController: such extension allows the user to automatically configure a set of
controllers and interceptors of GCM composite component. Moreover, the root composite encapsulates
the data parallel behavioural skeleton, extended by the user through the usermap.fractal ADL file, that
is directly bound to the two input interfaces provided by the application component as its “entry-point”
(in the case of the example, the application provides the same server port provided by the extended data
parallel behavioural skeleton).

4.3 How to write a parametric code

The whole application seen in the previous section, can be written as parametric with respect to the
ADL worker file name, the path to the initial QoS contract, and the path to the deployment file to be
used in dynamic instantiation. In other words, the ADL file can be generic enough to directly actualise
these three parameters in the user Java code, instead of cabling them in the fractal files. In order to write
a completely parametric code, we need very slight modifications to what we have seen above: the idea is
to let the parameters “flow” among the ADL description. Thus, the testcase.fractal can be defined
as parametric with respect to three arguments that will be passed to the usermap.fractal invocation.
The testcase.fractal file changes in the following way:

<definition name="gridcomp.example.statefulmap.adl.testcase"

extends="gridcomp.CompositeController"

arguments="worker,rulespath,padPath">

.....

<!-- the map -->

<component name="multicastComposite"

definition="gridcomp.example.statefulmap.adl.usermap(${worker},

${rulespath},

${padPath})"/>

<!-- the bindings -->

....

</definition>

On the other hand, these three arguments will be passed to the map instantiation.

<definition name="gridcomp.example.statefulmap.adl.usermap"

extends="gridcomp.map.mapInitQuery(${worker},${rulespath},${padPath})"

arguments="worker,rulespath,padPath">

<component name="server0" definition="${worker}(1)"/>

<component name="server1" definition="${worker}(2)"/>

<!-- bindings specifications -->

...

</definition>

Finally, the actual value of such arguments is passed at launching time to the root component as
part of the context associated to its instantiation. Thus, as we have seen in 3.3, in the main of the
application the user will provide three pairs to the java.util.Map representing the context:

Map context = new HashMap();

ProActiveDescriptor pad = PADeployment.getProactiveDescriptor(padPath);

context.put("deployment-descriptor", pad);

GridCOMP FP6-034442 page 15 of 38 D.NFCF.05

context.put("worker", "gridcomp.example.statefulmap.adl.worker");

context.put("rulespath",

"src/gridcomp/example/statefulmap/adl/rulesWithControl1.drl");

context.put("padPath", "local-deployment.xml");

Component testcase = (Component)

f.newComponent("gridcomp.example.statefulmap.adl.testcase",

context);

Note that the context is enriched also by the key deployment-descriptor to which an object of type
ProActiveDescriptor is associated. Such pair is needed by the non-functional machinery of the data
parallel skeleton to correctly deploy every new instance of a worker dynamically allocated.

4.4 Stateful data parallel skeleton

The stateful computation is naturally related to the mapInitQuery.fractal implementation of the data
parallel skeleton, since it is thought to provide an init interface to partition and distribute an input data
set, and a query interface to apply functional computation on the distributed partition that became part
of the workers state. However, the same skeleton can also been used in a stateless computation.

As soon as a worker is added or removed from the actual configuration, a problem arises in a stateful
computation: how can be the state redistributed in order to keep it consistent after the new configuration
has been established? The workers are the only components functionally responsible for the partition
assigned to them; thus, the workers are the only entities that can take care of the state. The mechanism
offered by the data parallel skeleton to preserve the state between configuration changes requires that each
worker provides a method for serializing and a method for deserialising its internal state by implementing
a specific interface. In other words, since the implementation of the state is a functional concern (it’s
only the user who knows how the state is implemented and it is fully application-dependant), should
be the user who “suggests” the framework about how to serialise and how to deserialise it, by offering
to the “external” world a java.util.List of opaque objects. In this prospect, the role of the skeleton
membrane will only be to collect a List of objects from the workers belonging to the old configuration
and to redistribute it to the new established set of workers.

On the other hand, if the a worker does not provide methods for serialising/deserialising the state, the
framework cannot make assumption on its implementation and we will talk about a stateless data parallel
behavioural skeleton : in case of a reconfiguration, the state will not be automatically redistributed and
the user will functionally update the data distribution among the workers, for instance by calling the
init interface again.

4.4.1 Setting up a worker for autonomic reconfiguration

If the user wants to exploit the autonomic reconfiguration features offered by the data parallel skeleton,
each worker must provide the autonomic support. In this sense, she/he simply needs to define a worker
component that:

• extends the grid.map.controller.DPWorkerController as mentioned above;

• provides the following server interface

<interface signature="gridcomp.map.controller.operation.ReconfigSupport"

role="server"

name="reconfig"/>

• is associated to a content class that implements, among the others, the ReconfigSupport.java

interface. Such interface provides two methods:

– public void setStatus(List<Task> tsl): it’s called by the membrane after a reconfigura-
tion has occurred for assigning the new partitions to each worker. The partition is represented
by a java.util.List<Task>.

– public List<Task> provideStatus(): it’s called by the membrane before a reconfiguration
occurs in order to collect the partitions. The partition must be packed as an object of type
java.util.List<Task>.

GridCOMP FP6-034442 page 16 of 38 D.NFCF.05

A gridcomp.map.Task object encapsulates a String, and Integer (in these cases the object is tagged
as “primitive” thus the method isPrimitive() will return true) or a List<Object>. Its content can
be retrieved through the getObject() method and size() will return 1 in case of primitive object, the
size of the List<Object>, otherwise.

4.4.2 The reconfiguration process

The reconfiguration is a three-steps process:

1. as first step, the partitions already assigned to the current workers are collected at passive level
through the invocation of the provideStatus() methods;

2. the reconfiguration proceeds by adding or removing a worker: the new worker will be mapped on
to a virtual node that will randomly chosen among the available ones described in the deployment
file in use;

3. as last step, the state collected in step 1 is partitioned on the basis of the new cardinality of
workers and the partitions are distributed accordingly;

See the examples provided in [6] to have a detailed description of the output offered to the user by these
three steps.

4.5 Stateless computation

If the workers provided by the user do not implement the ReconfiSupport.java interface, they are
intended not to offer the autonomic support for guaranteeing the automatic data distribution in case of
a reconfiguration.
See the examples provided in [6] to have a suggestion on how to monitoring the reconfiguration at
functional level and on how to functionally manage the redistribution of the data set.

4.6 Composite workers

The package gridcomp.example.compworker.map offers a perspective on how a dataparallel application
exploiting a composite worker can be written.

In this case, the fractal description of the worker will specify a composite component embedding one
or more components, as in the example below:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.compworker.map.adl.pipe"

extends="gridcomp.CompositeController" arguments="vn-id">

<interface signature="gridcomp.example.compworker.map.impl.Stadio1Itf"

role="server"

name="inputport"/>

<component name="stage1"

definition="gridcomp.example.compworker.map.adl.stadio1(${vn-id})"/>

<component name="stage2"

definition="gridcomp.example.compworker.map.adl.stadio2(4)"/>

<binding client="this.inputport"

server="stage1.input"/>

<binding client="stadio1.output"

server="stage2.input"/>

<virtual-node name="slave-node-${vn-id}" cardinality="single" />

</definition>

GridCOMP FP6-034442 page 17 of 38 D.NFCF.05

The composite described by pipe.fractal provides a server port, encapsultes two composites and spec-
ifies the related bindings. The description of stadio1.fractal is nothing surprising and appears as
follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.compworker.map.adl.stadio1"

extends="gridcomp.map.controller.DPWorkerController" arguments="vn-id">

<interface signature="gridcomp.example.compworker.map.impl.Stadio1Itf"

role="server"

name="input"/>

<interface signature="gridcomp.example.compworker.map.impl.Stadio2Itf"

role="client"

name="output"/>

<content class="gridcomp.example.compworker.map.impl.Stadio1Impl"/>

<virtual-node name="slave-node-${vn-id}" cardinality="single" />

</definition>

Indeed, stadio2.fractal is a simple primitive component. Both components extend the DPWorkerController
description.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.compworker.map.adl.stadio2"

extends="gridcomp.map.controller.DPWorkerController" arguments="vn-id">

<interface signature="gridcomp.example.compworker.map.impl.Stadio2Itf"

role="server"

name="input"/>

<content class="gridcomp.example.compworker.map.impl.Stadio2Impl"/>

<virtual-node name="slave-node-${vn-id}" cardinality="single" />

</definition>

Note that, since the worker description can be parametric with respect to just a parameter, if a user
needs to assign different virtual nodes to each component involved in the description above (components
pipe, stage1 and stage2), in the current version of the framework he will need to cable the virtual nodes
in the description, or to decide to which component the argument is related. In the example above, the
user decided that the parameters refers to the composite and to the first stage of the pipeline (they will
located in pair on the same virtual node), while the second will be loaded on a different virtual node.

Limitations in the use of composite workers In the current version of the data parallel
behavioral skeleton, in case of composite workers only the stateless computation is supported. This
limitation arises from the fact that, once the mechanism illustrated in Section 4.4.1 has been consolidated,
keeping the state between one configuration and another would require a coordinating functionality
offered by the autonomic controller of the composite worker. Developing such feature belongs to the set
of goals related to the next refinements of the skeleton.

4.7 Observable events in the map behavioral skeleton

Currently, there are two events that have been designed to specifically observe the map behaviour, each
represented by a given Java bean:

GridCOMP FP6-034442 page 18 of 38 D.NFCF.05

• the size of a partition assigned to each worker of a map: the bean is implemented by class
gridcomp.manager.map.impl.PartitionSizeBean and returns the size of the partition assigned
to each worker by the MapDispatch distribution policy;

• the cardinality of workers in a map: it returns the current number of workers and the bean is
implemented by the class gridcomp.manager.map.impl.NumWorkerBean.

Moreover, in gridcomp.manager.beans.CounterBean a bean functionally equivalent to a counter has
been developed . This bean is particularly useful to count the number of evaluation steps or to introduce
idle evaluation cycles while the monitoring system collects more reliable performance information.

A counter rule could appear as follows:

rule "Count"

salience -10

when

// include some other bean evaluations, if needed

$count : CounterBean(value < 10)

then

// take some action, if needed...

$count.incValue();

end

rule "CountReset"

salience -20

when

// include some other bean evaluations, if needed

$count : CounterBean(value >= 20)

then

$count.reset();

end

The rule Count has a minimal salience and if its condition holds, the value of the count is increased. In
the CountReseat rule, the value of the count is reinitialised.

The example contract below shows how this bean can be used to module the evaluation of the quality
of service. Let us assume to have the following rule in our contract:

rule "CheckHigherBound"

when

$partBean : PartitionSizeBean(value >= Manager2Constants.DP_MAX_PART_SIZE)

$count : CounterBean(value > Manager2Constants.DP_SKIP_TURN_COUNTER)

then

System.out.println("Inadequate partition size ="+$partBean.getValue());

$partBean.setData(new Integer(Manager2Constants.DP_ADD_WORKERS));

$partBean.fireOperation(ManagerOperation.ADD_EXECUTOR);

$count.reset();

end

The effects of this contract (that use variables defined in class Manager2Constants) is to keep idle
until at least DP SKIP TURN COUNTER evaluation cycles has been done. After that, CheckHigherBound is
activated if the partition of each worker is greater than DP MAX PART SIZE and the effect is

• to set the number of workers to be added (represented by the DP ADD WORKERS constant) as value
for Data field in the PartitionSizeBean.

• to fire the ADD EXECUTOR operation

• to reset the counter

• to update the value of the counter

From this point ahead, at least other DP SKIP TURN COUNTER idle cycles will be required before another
firing of CheckHigherBound gets possible.

GridCOMP FP6-034442 page 19 of 38 D.NFCF.05

4.8 Guidelines for using the stateful data parallel skeleton

The steps a user must consider in order to successfully use the stateful data parallel skeleton can be
summarised as follows:

1. provide the root component description as an extension of the gridcomp.CompositeController

(and any other sub-component he/she wants to use);

2. include in his application a component extending the adequate version of the data parallel skeleton
among those available in gridcomp.map. The extended component should contain (if needed) the
definition of the workers included in the initial configuration of the skeleton;

3. provide the worker component description by extending DPWorkerController in the package
named gridcomp.map.controller, and by implemeting the ReconfigSupport interface in order
to instruct the manager about how serialise/de-serialise the worker state. Define the virtual node
identifier on which the worker will be assigned to as an argument (i.e. a parameter) of the fractal
description file;

4. populate the java.util.HashMap context of the root component with a ProActiveDescriptor

instance of the related to the deployment file in use.

5. provide the needed parameters (the ADL file of the worker, the path to the QoS contract file and
the path to the deployment file) to the skeleton at description or launching time;

4.9 Guidelines for using the stateless data parallel skeleton

The steps a user must consider in order to successfully use the stateless data parallel skeleton can be
summarised as follows:

1. provide the root component description as an extension of the gridcomp.CompositeController

(and any other sub-component he/she wants to use);

2. provide the worker component description as an extension of the gridcomp.PrimitiveController

or the gridcomp.map.controller.DPWorkerController; define the virtual node identifier on which
the worker will be assigned to as an argument (i.e. a parameter) of the fractal description file;

3. include in his application a component extending the adequate version of the data parallel skeleton
among those available in gridcomp.map. The extended component should contain the definition
of the workers included in the initial configuration of the skeleton;

4. treating at functional level the state updates of the workers in case of reconfiguration (if needed);

5. populate the java.util.HashMap context of the root component with an instance of the ProActive
class ProActiveDescriptor related to the deployment file in use.

6. provide the needed parameters (the ADL file of the worker, the path to the QoS contract file and
the path to the deployment file) to the skeleton at description or running time;

GridCOMP FP6-034442 page 20 of 38 D.NFCF.05

5 The Farm behavioural skeleton

In this tutorial we will detail the progress achieved for the active level of autonomicity; for a detailed
discussion about the passive level we refer back to [6].

We recall that a behavioural skeleton exploits an active level of autonomicity if the non-functional
strategies related to the reconfiguration of the composite are taken by a manager belonging to the skeleton
itself. The decision taken by the manager can be driven accordingly with the user needs thorough a QoS
contract.

5.1 ADL description of the skeleton

The farm behavioural skeleton is depicted in Fig. 3

AM
ABC

worker

ABC

worker

ABC

Figure 3: The farm behavioural skeleton logical organisation

The composite component gridcomp.manager.farm.adl.farm representing the skeleton has been
designed focusing on the following requirements:

• all the provide ports must be server ports

• the skeleton description is parametric with respect to three parameters provided at instantiation
time:

1. the input QoS contract file path

2. the package name of the worker ADL file

3. the path to the deployment file

• a properties file has to be associated to each skeleton of this type (see next section for further
details).

5.2 How to use the farm skeleton

In order to instantiate a farm skeleton, the user has simply to extend the farm.fractal file. The extended
component will provide the functional interfaces of the skeleton and the initial number of workers encap-
sulated by the starting configuration of the skeleton. As an example, the following userfarm.fractal

file offers the description of a farm including just one worker and exposing two interfaces with different
roles.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.active.pi.adl.userfarm"

extends="gridcomp.manager.farm.adl.farm(${contractFile},

${worker},

${padPath})"

arguments="contractFile,worker,padPath">

GridCOMP FP6-034442 page 21 of 38 D.NFCF.05

<interface name="work"

role = "server"

signature = "gridcomp.example.active.pi.Worker" />

<interface name="send"

role = "client"

signature = "gridcomp.example.active.pi.Collector" />

<component name="worker"

definition = "${worker}"/>

<binding client="this.work" server = "worker.work"/>

<binding client="worker.send" server = "this.send"/>

<virtual-node name="master-node" cardinality="single"/>

<beske xmlFile="src/gridcomp/example/active/pi/farm.properties"/>

</definition>

The description extends the farm.fractal file passing the three arguments mentioned above. In
particular, the worker have to extend the gridcomp.PrimitiveController file and offer the functional
interfaces to the external world:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.active.pi.adl.worker"

extends="gridcomp.PrimitiveController">

<interface signature="gridcomp.example.active.pi.Worker"

role="server"

name="work"/>

<interface signature="gridcomp.example.active.pi.Collector"

role="client" name="send"/>

<content class="gridcomp.example.active.pi.WorkerImpl"/>

<virtual-node name="master-node" cardinality="single"/>

</definition>

Since this version of the farm skeleton does not provide a way to parametrically express the virtual
node on which the worker will be assigned to, the user is asked for providing a worker ADL description
for each virtual node involved in the deployment.2 In order to facilitate this step, the description of a
user extended farm must always include the tag

<beske xmlFile="path to a properties file"/>

where the properties file has the following content:

adl.dir = gridcomp/example/active/pi/adl/slaves

xml.file = current-deployment.xml

The first property, called slaves directory, contains the path to a directory in which the user collected
the ADL descriptions of the set of workers the application could instantiate. The second property
contains the name of the deployment file in use. The role of this tag is to pass these two arguments to
the autonomic controllers that will drive the reconfiguration of the skeleton at running time .
The slave directory contains a set of fractal files like the following one:

2In the future, this solution will be replaced with the more light way of passing the virtual node identifiers as
arguments to the worker description, already used for the dataparallel skeleton.

GridCOMP FP6-034442 page 22 of 38 D.NFCF.05

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADLVbc 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.active.pi.adl.slaves.slave-1"

extends="gridcomp.example.active.pi.adl.worker">

<virtual-node name="slave-node-1" cardinality="single"/>

</definition>

De facto, since the farm represents a functional replication, each worker definition is given as a
derivation of the worker/ description given as input to the skeleton but specializing the destination
virtual node.

Finally, the root application can be written as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.active.pi.adl.root"

extends="gridcomp.CompositeController"

arguments="contractFile">

<interface signature="gridcomp.example.active.pi.Master"

role="server"

name="do"/>

<!-- a stream generator -->

<component name="client"

definition="gridcomp.example.active.pi.adl.master"/>

<!-- the farm -->

<component name="farm"

definition="gridcomp.example.active.pi.adl.userfarm(${contractFile},

gridcomp.example.active.pi.adl.worker,

current-deployment.xml)"/>

<binding client="this.do" server="client.do"/>

<binding client="client.work" server="farm.work"/>

<binding client="farm.send" server="client.send"/>

<virtual-node name="master-node" cardinality="single"/>

</definition>

The ADL file root.fractal represents a composite that extends gridcomp.CompositeController in
order to allow the user to automatically include a set of controllers and interceptors of GCM composite
components. Moreover, the composite encapsulates a generator for the stream, and the farm behavioural
skeleton extended by the user through the userfarm.fractal ADL file.

Notice that, as in the map case, both the userfarm.fractal and the root.fractal descriptions can
be written in a fully parametric way with respect to the arguments needed by the farm skeleton (as
shown Sec. 4.3).

5.3 Composite workers

The package gridcomp.example.compworker.farm offers an example of how to write a version of the
Mandelbrot application (the full code is provided among the examples in the GridComp-Examples folder)
in which the worker is a composite component. In the example, the worker is a two stages pipeline in
which the first stage redirect the method calls to the second stage (do nothing, actually) that really
evaluates the Mandelbrot set.

GridCOMP FP6-034442 page 23 of 38 D.NFCF.05

As shown in Sec. 4.6, using a composite component to instantiate farm behavioural skeleton is
methodologically identical of using a primitive component. Moreover, by exploiting a parametric ADL
file for the composite worker is also possible to avoid the replication of ADLs files of the inner components.
As matter of a fact, the only additional complexity due to the usage of composite worker come from the
growth of virtual nodes in the deployment file.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.compworker.farm.adl.workerpipe"

extends="gridcomp.CompositeController" arguments="vn1,vn2">

<interface signature="gridcomp.example.compworker.farm.impl.LineServer"

role="server"

name="lineserver-server"/>

<interface signature="gridcomp.example.compworker.farm.impl.LineCollector"

role="client"

contingency="optional"

name="collector-client"/>

<component name="first"

definition="gridcomp.example.compworker.farm.adl.dummyworker(${vn1})"/>

<component name="second"

definition="gridcomp.example.compworker.farm.adl.lineserver(${vn2})"/>

<binding client="this.lineserver-server"

server="first.start"/>

<binding client="primo.input"

server="second.lineserver-server"/>

<binding server="this.collector-client"

client="second.collector-client"/>

<virtual-node name="output-node" cardinality="single" />

</definition>

The workerpipe.fractal file describing the worker is a regular composite embedding two components
and providing the bindings between them and between the internal interfaces. Moreover, the pack-
age gridcomp.example.compworker.farm.slave will collect the descriptions of the workers dynamically
instantiated and extending the definition above by just overriding the virtual-node association.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.compworker.farm.slave.slave-1"

extends="gridcomp.example.compworker.farm.adl.workerpipe(1,2)">

<virtual-node name="slave-node-1" cardinality="single" />

</definition>

Note that extending the composite description to define a new component worker also allow to differen-
tiate the virtual nodes that will be assigned to the encapsulated components, because their identifiers
can be passed as arguments to the workerpipe.fractal description. In fact, according to the extended
description of the composite, the virtual node with identifier 1 will be assigned to component first,
while the virtual node with identifier 2 will be assigned to component second.

GridCOMP FP6-034442 page 24 of 38 D.NFCF.05

Finally, the description of the two primitive components encapsulated by the composite worker is not
different from any other primitive description: the ADL file extends the gridcomp.PrimitiveController,
it’s parametric with respect to the virtual node hosting the component and esposes the functional
interfaces needed to provide the computation.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.compworker.farm.adl.lineserver"

extends="gridcomp.PrimitiveController" arguments="vn2">

<interface signature="gridcomp.example.compworker.farm.impl.LineCollector"

role="client"

contingency="optional" name="collector-client"/>

<interface signature="gridcomp.example.compworker.farm.impl.LineServer"

role="server" name="lineserver-server"/>

<content class="gridcomp.example.compworker.farm.impl.LineServerImpl"/>

<virtual-node name="slave-node-${vn2}" cardinality="single"/>

</definition>

Limitations in the use of composite workers While instancing a composite worker for imple-
menting the farm, the user must consider that the ManagerOperation.BALANCE LOAD is not supported
and cannot be used in the definition of the QoS contract’s actions. In fact, this operation is based on
moving the tasks enqueued in the workers’ priority queues in order to assign ready jobs to the instanced
worker. However, all the tasks passing through the composite worker interfaces move directly to the
inner components’ queues, making useless the rebalancing action on the composite queue.

5.4 Observable events in the farm behavioral skeleton

Currently, there are three events that have been designed to specifically observe the farm behaviour,
each represented by a given Java bean:

• the arrival rate of the tasks belonging to an input stream, being the bean implemented by the
class gridcomp.manager.beans.ArrivalRateBean;

• the departure rate of the tasks belonging to an input stream, being the bean implemented by class
gridcomp.manager.beans.DepartureRateBean;

• the cardinality of workers in a farm: the bean returns the current number of workers and is
implemented by the class gridcomp.manager.beans.NumWorkerBean.

In the description of a QoS contract related to a farm-based application, a counter bean as the one
described in Section 4.7 could also be used in order to introduce idle cycles in the evaluation time-line.

5.5 Guidelines for using the farm skeleton at active level

The steps a user must consider in order to successfully use the farm skeleton are the following ones:

1. provide the root component description as an extension of the gridcomp.CompositeController

2. include a component extending farm.fractal; the extended component should contain the def-
inition of the workers included in the initial configuration of the skeleton, the beske XML tag
specifying a path to a properties file and any other functional interface;

3. provide a properties file in which the slaves directory path and the name of the deployment file
are specified;

4. provide a description of the worker and a set of its extensions (to be collected in the slave directory),
one for each virtual node on which a worker could be loaded at running-time

5. provide the needed parameters (the ADL file of the worker, the path to the QoS contract file
and the path to the deployment file) to the skeleton at instancing (i.e. through constants) or at
running time (i.e. through ADL arguments).

GridCOMP FP6-034442 page 25 of 38 D.NFCF.05

6 Multilevel management

One of the major improvements introduced with the current version of our behavioral skeletons is the
possibility to configure a multilevel management between different managers in the same application.
Let us assume to have an application like the one depicted in Fig. 4, in which a data parallel skeleton
as the one showed in 4 is initialized and queried by a Producer component that is in charge of defining
the initial data set and to push the queries to the skeleton. We could imagine a scenario in which, as

worker

AM

ABC

worker

S
Producer

AM

AM

Figure 4: Managers interacting at 2 level of hierarchy

soon as a reconfiguration occurs in the skeleton, the Producer corrects its behavior by, for instance,
modifying the size of the data set given as input to the skeleton or modifying the arrival time between
two successive queries. In order to implement this scenario and, generally speaking, a situation in which
sibling components can coordinate each other in order to realize a coherent behavior, we need a two-level
management. In this hierarchy, each sibling is responsible for its internal behavior (its not-functional
concerns) by means of its manager or it’s autonomic controllers, depending on if it exposes a passive or an
active autonomicity. The interaction between the sibling components, instead need to be coordinated by
a super-manager that monitors not-functional behaviors of the controlled components, plans a behavioral
strategy, and execute it by suggesting the siblings how to modify their behavior in order to implement
a coherent modification. In order to provide these features to GCM components and, in particular, to
BeSke component, we have extended the set of non-functional interfaces to a set delegated to treat the
inter-relation among managers.

6.1 Not functional interfaces

According to the picture in Fig. 4, the root component embodies a component behaving as a “root
manager”: this component extends gridcomp.manager.GenericAutonomicManager and exposes a set of
non-functional interface for interacting with the other components, in particular:

• commit-contract: it’s a use port through which the manager submit a new instance of a QoS
contract from an lower level component;

• commit-value: it’s a use port through which the manager submit a new set of requirements
(i.e. pairs <variable, value>) to a lower level component, so that the controlled component can
update its contract;

• commit-to-all: it’s a use port similar to the commit-contract but it exposes a multicast cardi-
nality. It’s used when for the coordination of two or more controlled managers as a whole

• raise-violation: it’s a provide port through which a root manager receives violation signals from
lower level components.

As a result, the protocol activated while a interaction manager-manager occurs is the following:

• a low level manager can signal to the root manager that one or more conditions in its contract
have been broken through the raise violation port. Note that the signalling phase also occurs
if the manager itself is not able to plan a valuable strategy with respect to the QoS goals to be
reached.

GridCOMP FP6-034442 page 26 of 38 D.NFCF.05

• the root manager submit a new contract or a new (set of) value to the controlled manager through
the commit-contract, the commit-value and the commit-to-all, respectively.

A root manager can push a new contract on the basis of

• the signaling of a violation raised at lower level

• an explicit request pushed by the user

• a planning strategy due to the evaluation of monitored conditions related to the environment
and/or QoS information provided by the other components acting in the computation.

6.2 Defining and implementing a top-manager

The application in Fig. 4 has been implemented in gridcomp.example.stateful.twolevels.*. The
example does not represent a real application since its the goal is to show the potential features of the
multilevel mechanism and how to use them.
Before detailing the whole application, we have to point out that we will need to define a manager for the
root component, the so called top-manager. In this case, it will not be a brand new component, exposing
specific interfaces, that the user will implement in order to specify which particular management the
application will exploit at higher level of autonomic hierarchy. In the proposed example, the top-manager
is defined by the following ADL file:

?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.stateful.twolevels.adl.my-top-manager"

extends="gridcomp.manager.GenericAutonomicManager"

arguments="contractFile-top,numServed">

<interface signature = "gridcomp.AutonomicServerManager"

role = "client"

name = "commit-contract"/>

<interface signature = "gridcomp.AutonomicServerManager"

role = "client"

name = "commit-value"/>

<interface signature = "gridcomp.AutonomicMulticastServerManager"

role = "client"

name = "commit-to-all"

cardinality = "multicast"/>

<interface signature = "gridcomp.AutonomicClientManager"

role = "server"

name="raise-violation"/>

<content class="gridcomp.example.stateful.twolevels.impl.TopManager"/>

<attributes

signature="gridcomp.manager.AutonomicManagerAttributeController">

<attribute name="PerformanceContractFile" value="${contractFile-top}"/>

<attribute name="LoggerFileName" value="/tmp/top-status.log"/>

<attribute name="AutonomicLoopCycle" value="4000" />

</attributes>

</definition>

The top-manager exposes the four not-functional interfaces related to the inter-manager communication
system and a set of attributes needed to set some important values at start-up time:

1. PerformanceContractFile, the path to the QoS contract file on which the top-manager will take
decisions and that will passed to it as first contract at launching time

2. LoggerFileName, the path to a logger file name to track the manager output

GridCOMP FP6-034442 page 27 of 38 D.NFCF.05

3. AutonomicLoopCycle, a numerical value to express the time in milliseconds lasting between each
activation of the manager (i.e. the evaluation of the QoS contract) and the successive.

The ADL description is parametric with respect the path to the QoS file.
From the implementation point of view, once the user has extended GenericAutonomicManager class,
the top-manager is written as an implementation of the org.objectweb.proactive.RunActive interface.
Since the implementation of the methods related to the not-functional interfaces and to the set of
attributes is already provided by the class GenericAutonomicManager, the user simply need to implement
the method needed to read the QoS contract, as it can be seen in the following Java implementation
class:

public class TopManager

extends GenericAutonomicManager

implements RunActive//, TopManagerAttribute{

private final org.apache.log4j.Logger logger =

org.apache.log4j.Logger.getLogger(gridcomp.log.Loggers.MANAGER);

private HashMap<String,Double> methodsToMonitor =

new HashMap<String, Double>();

public TopManager(){

super("/tmp/monitorfile");

}

protected String readContractFile(String fName) {

File f = new File(fName);

if (f.exists()){

// Reading contract from file fName

logger.info("Reading contract from file " + fName);

RulesParser parser = new RulesParser();

logger.debug("Parsing Contract");

String parsed = parser.parse(f.getAbsolutePath());

logger.debug("Parsing Contract "+f.getAbsolutePath());

if ((parsed!= null) && (parsed.length() > 0)){

ArrayList<String> methodNames = parser.getMethodsNames();

for (String method: methodNames){

String tmp = method.replace("\"", "");

methodsToMonitor.put(tmp, 0.0);

}

logger.debug("Committing Contract");

return(parsed);

}

}else {

logger.warn("File " +fName + " doesn’t exist!");

}

return (null);

}

}

The constructor requires to setup a file in which the monitoring data will be written during the
execution. The only method implementation required is related to readContractFile that will initialize
the set of method to monitor and set the file to be evaluated as QoS contract file.

6.3 Controlled components

The root component of the application is described by the following ADL file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

GridCOMP FP6-034442 page 28 of 38 D.NFCF.05

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.stateful.twolevels.adl.testcase"

extends="gridcomp.CompositeController"

arguments="worker,rulespath,rulespath-top,padPath">

<interface signature="gridcomp.example.stateful.twolevels.impl.Producer"

role="server"

name="do" />

<component name="producer"

definition="gridcomp.example.stateful.twolevels.adl.producer"/>

<component name="map"

definition="gridcomp.example.stateful.twolevels.adl.mymap(${worker},

${rulespath},

${padPath})"/>

<!-- the top manager! -->

<component name="top-manager"

definition="gridcomp.example.stateful.twolevels.adl.my-top-manager(${rulespath-top})"/>

<binding client="this.do" server="producer.do"/>

<binding client="producer.init" server="map.multicastServerItf-01"/>

<binding client="producer.query" server="map.multicastServerItf-02"/>

<binding client = "map.raise-violation" server = "top-manager.raise-violation"/>

<binding client="top-manager.commit-contract" server="map.commit-contract"/>

<binding client="top-manager.commit-value" server="producer.commit-value"/>

<binding client="top-manager.commit-to-all" server="map.recv-mult"/>

<binding client="top-manager.commit-to-all" server="producer.recv-mult"/>

<controller desc="composite"/>

</definition>

It defines three inner component: the producer (a primitive component), the map (i.e. the user extension
of the map behavioral skeleton) and the top-manager, the one detailed above.
Before entering the details related to the bindings among them, let us take a look the the producer

definition, as specified below:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.stateful.twolevels.adl.producer"

extends="gridcomp.PrimitiveController">

<interface signature="gridcomp.example.stateful.twolevels.impl.Producer"

role="server"

name="do"/>

<interface signature="gridcomp.map.port.MapInitInterface"

role="client"

name="init"/>

<interface signature="gridcomp.map.port.MapQueryInterface"

role="client"

name="query"/>

<interface signature = "gridcomp.AutonomicServerManager"

role = "server"

name = "commit-value"/>

GridCOMP FP6-034442 page 29 of 38 D.NFCF.05

<interface signature = "gridcomp.AutonomicMulticastClientManager"

role = "server"

name = "recv-mult"/>

<content class="gridcomp.example.stateful.twolevels.impl.ProducerImpl"/>

</definition>

The producer exposes three functional interfaces and two not-functional interfaces. Interface do

represents the “entry-point” to the application and is the one called by the root (through an internal
binding) to start the application. Interfaces init and query are the two interfaces that will be bound
to the gridcomp.map.mapInitQuery version of the data-parallel behavioral skeleton.
The two not-functional interfaces, instead, are needed to bound the producer component to the top-
manager. In our case it offers two interfaces:

• commit-value, that will be provided by the producer component to receive quality of service values
from the top-manager in a one-to-one communication channel.

• recv-mult, that will be provided by the producer component to receive quality of service values
from the top-manager in a one-to-many communication channel.

From an implementation point of view, the producer will need to implement org.objectweb.proactive.RunActive;
moreover, AutonomicServerManager and AutonomicMulticastClientManager need to be implemented
in order to define the behavior of the producer after a new QoS value as been committed through its
interface. For instance, in the example shown below, the functional behavior of the producer is imple-
mented in the method start(): for each life cycle, the component creates a List of SIZE elements to
query the map.

public class ProducerImpl

implements Producer, RunActive, AutonomicServerManager,

AutonomicMulticastClientManager{

private int SIZE; // the size of the input dataset

MapQueryInterface map; // the reference to the query port of the Map BeSke

public ProducerImpl(int n){

this.SIZE = n;

}

public void start(){

// this method could represent the entry point of the application

....

List inputlist = ...;

while (true){

for (int i=0;i<SIZE;i++)

inputlist.add(...);

List t = map.searchMatch(inputlist);

}

....

}

// this method is required by the AutonomicServerManager interface

// it’s invoked by the top-manager to signal a context change

public GenericTypeWrapper<Object> commitValue(GenericTypeWrapper<Object> qosValue) {

// retrieve the value coming from the top-manager

int val = ((Integer)qosValue.getObject()).intValue();

if (val>0)

this.SIZE = this.SIZE * 2;

else

this.SIZE = this.SIZE/2;

return new GenericTypeWrapper(null)

}

GridCOMP FP6-034442 page 30 of 38 D.NFCF.05

A not-functional behavior reacting to the context change could be the one represented by the im-
plementation of the commitValue method. Such method is invoked by the top-manager to signal that
some variables in the context have been changed. In the example above, depending on the sign of the
committed value, the producer will decide if double or half the size of the lists provided as input to the
Map BeSke at each cycle.

6.4 Father-child bindings

Once we have discussed the interfaces of the root component, the top-manager component, the producer
and the map (see Section 4), let us understand how these four entities can be bound in order to have an
effective not-functional communication system. The bindings have to be explicated in the root component
ADL and is detailed as follows:

<!-- ---- bindings between functional interfaces ---- -->

<binding client="this.do" server="producer.do"/>

<binding client="producer.init"

server="map.multicastServerItf-01"/>

<binding client="producer.query"

server="map.multicastServerItf-02"/>

<!-- ---- bindings between NOT-functional interfaces ---- -->

<!-- both components are bound to recv-mult -->

<binding client="top-manager.commit-to-all"

server="map.recv-mult"/>

<binding client="top-manager.commit-to-all"

server="producer.recv-mult"/>

<!-- --- the map is bound to raise-violation --- -->

<binding client = "map.raise-violation"

server = "top-manager.raise-violation"/>

<!-- --- map bound to the manager through commit-contract --- -->

<binding client="top-manager.commit-contract"

server="map.commit-contract"/>

<!-- --- map bound to the manager through commit-value --- -->

<binding client="top-manager.commit-value"

server="producer.commit-value"/>

As it can be seen by the example above, the bindings between the top-manager and the other
components could be of different type: the map component is bound to the top-manager through a
the recv-mult, the raise-violation and the commit-contract port, while the producer component is
bound through the recv-mult and the commit-value port. This is due because

In fact, since the not-functional relation between top-manager and controlled-component depends on
what they need to communicate each other, all the not-functional port are optional in the top-manager
set of interface and each one could be included or not, taking into account the particular pair involved
in the binding. In our specific example, the programmed behavior requires that

1. in case of a reconfiguration, the map component proceeds to the adding/removing a component
and to signal the change to the top-manager through the raise-violation port

2. as soon as the top-manager has received a violation signal from the map component, depending
on the action taken, the top-manager could decide to send a not-functional message to both
the sub-components through the recv-mult port or to just the producer component through
the commit-value port (maybe a code identifying the type of violation raised elsewhere in the
component tree).

6.5 Driving the top-manager behavior

As specified by the ADL file describing the top-manager, this entity needs to be provided with a QoS
contract. The role of the contract is to detect the behavior of the controlled components and, eventually,

GridCOMP FP6-034442 page 31 of 38 D.NFCF.05

to take some decisions (action) in order to keep the performance in an acceptable range. The contract
showed below is the one implementing the protocol required to implement the application in Fig. 4.

package gridcomp.example.stateful.twolevels.impl;

import gridcomp.manager.beans.*;

import gridcomp.manager.operations.*;

import gridcomp.operation.*;

import gridcomp.manager.util.MessageList;

/*

* QoS contract to be submitted to the Top-Manager

*

*/

[methodMonitor="runActivity"]

rule "detectViolation"

when

$exception : ViolationIdentityBean(value < 0)

then

System.out.println("Top-Manager contract: Violation n. "+

$exception.getValue()+" from "+$exception.getIdentity());

$exception.setData(new Integer(-600));

$exception.fireOperation(ManagerOperation.PUSH_OBJECT);

$exception.setData((Object)

new MessageList(

new ViolationMessage[]{

new ViolationMessage($exception.getValue(),$exception.getIdentity()),

new ViolationMessage($exception.getValue(),$exception.getIdentity())

})

);

$exception.fireOperation(ManagerOperation.PUSH_LIST);

$exception.setValue(new Integer(0));

end

The monitoring activity is based on the values provided by

gridcomp.manager.beans.ViolationIdentityBean

which carries an Integer value representing an error code and a String representing a symbolic name
for the original sender of the violation. Once the bean returns a not-null violation code, it sends to the
producer component a message (an Integer value). The message is sent through the commit-value port
and the operation, which belongs to the set of pre-defined operation included in the ManagerOperation

class is called PUSH OBJECT. After that, the Manager could decide to send a message to both the com-
ponents through its recv-mult port that is a multicast client port. Thus, it needs to instantiate a List

of messages (implemented by gridcomp.manager.util.MessageList, an extension of ArrayList) and to
fire the PUSH LIST operation. At the end, the bean value becomes 0 again.

Let us see how this protocol is activated by the map QoS contract. This contract could be written
as follows:

package gridcomp.example.stateful.twolevels.impl;

import gridcomp.manager.beans.*;

import gridcomp.manager.operations.*;

import gridcomp.operation.*;

import gridcomp.manager.map.impl.PartitionSizeBean;

import gridcomp.manager.map.impl.NumWorkerBean;

/*

* QoS contract to be submitted to the Map Beske

*

*/

[methodMonitor="eval"]

GridCOMP FP6-034442 page 32 of 38 D.NFCF.05

rule "CheckHigherBound"

when

$arrivalBean : PartitionSizeBean(value > 18 && value < 24)

then

$arrivalBean.fireOperation(ManagerOperation.ADD_EXECUTOR);

$arrivalBean.setData(new ViolationMessage(-100,"map-message"));

$arrivalBean.fireOperation(ManagerOperation.RAISE_VIOLATION);

retract($arrivalBean);

end

The decision taken by the manager is based on the partition size returned by the PartitionSizeBean:
if the size belongs to a given range, the first operation fired by the manager is an ADD EXECUTOR to
increase by one the worker cardinality; then a ViolationMessage containing an error code and a symbolic
identity for the sender component is instantiated and provided to the bean as its data; at the end, a
RAISE VIOLATION operation is fired, which means that the instantiation violation message will be sent
to the top-manager through the raise-violation client port.

6.6 Another example

The package gridcomp.example.active.twolevels.* offers an example of multilevel management in
the context of a farm BeSke. The application is depicted in Fig. 4 and, with respect to the previous
example, the top-manager controls three components, two primitives and one farm.
The root application is represented by the following root.fractal ADL file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name = "gridcomp.example.active.twolevels.adl.root"

extends = "gridcomp.CompositeController"

arguments="contractFile-farm,worker,padpath">

<!-- ----------- the inner components ------------------ -->

<component name="input"

definition = "gridcomp.example.active.twolevels.adl.input"/>

<component name="farm"

definition = "gridcomp.example.active.twolevels.adl.userfarm(${contractFile-farm},

${worker},

${padpath})" />

<component name="output"

definition = "gridcomp.example.active.twolevels.adl.output"/>

<!-- ---------------- the top-manager ------------------- -->

<component name="top-manager"

definition = "gridcomp.example.active.twolevels.adl.top-manager"/>

<!-- ---------------- the bindings ------------------- -->

<binding client = "farm.collector-client" server = "output.collector-server"/>

<binding client = "input.lineserver-client" server = "farm.lineserver-server"/>

<binding client = "top-manager.commit-contract" server = "farm.commit-contract"/>

<binding client = "farm.raise-violation" server = "top-manager.raise-violation"/>

<binding client = "top-manager.commit-value" server = "input.set-rate-server"/>

<virtual-node name="root-node" cardinality="single"/>

</definition>

while the top-manager is described as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

GridCOMP FP6-034442 page 33 of 38 D.NFCF.05

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name = "gridcomp.example.active.twolevels.adl.top-manager"

extends = "gridcomp.manager.GenericAutonomicManager"

arguments="contractFile-top">

<interface signature = "gridcomp.AutonomicServerManager"

role = "client"

name = "commit-contract"/>

<interface signature = "gridcomp.AutonomicClientManager"

role = "server" name="raise-violation"/>

<interface signature = "gridcomp.AutonomicServerManager"

role = "client" name = "commit-value"/>

<content class="gridcomp.example.active.twolevels.TopManager"/>

<attributes signature="gridcomp.manager.AutonomicManagerAttributeController">

<attribute name="PerformanceContractFile" value="${contractFile-top}"/>

<attribute name="LoggerFileName" value="/tmp/top-status.log"/>

<attribute name="AutonomicLoopCycle" value="4000" />

</attributes>

<virtual-node name="top-manager-node" cardinality="single"/>

</definition>

The top-manager exposes a raise-violation server port and two client ports, commit-value and
commit-contract, whose role is already been explicated in Section 6.1. These ports are bound to the
input and the farm components; in particular, the raise-violation is bound to the raise-violation

port belonging to the BeSke component since it represents the channel through which the (manager of
the) farm signals to the top-manager two possible type of events:

• notEnoughTasks VIOL: the input rate is too low and the BeSke is not more able to satisfy its
internal QoS contract

• tooMuchTasks VIOL: the input rate is too high and the BeSke is not more able to satisfy its internal
QoS contract

The farm signals these events by means of specific rules in its contract. As instance, the following one is
the rule through which the first input rate violation is signalled to the top-manager (look at rule.drl

to see the whole contract):

rule "CheckInterArrivalRateLow"

salience 5

when

$arrivalBean : ArrivalRateBean(value < ManagersConstants.FARM_LOW_PERF_LEVEL)

$count : CounterBean(value > ManagersConstants.FARM_SKIP_TURN_COUNTER)

then

$arrivalBean.setData(ManagersConstants.notEnoughTasks_VIOL);

$arrivalBean.fireOperation(ManagerOperation.RAISE_VIOLATION);

end

Adaptive behavior The not-functional behavior of the top-manager is represented by its contract,
rules-top.drl: as soon as the observed time reaches a minimal threshold, the top-manager starts
checking if the input rate falls in a given range and acts in order to keep this range valid. This be-
havior is kept until there are enough remaining tasks to compute, else no autonomic actions are taken
any more. The manager can detect two type of violation, both represented as error code in the class
gridcomp.example.active.twolevels.ManagersConstants and signalled by the farm BeSke:

• notEnoughTasks VIOL if the input rate needs to be increased: in this case the top-manager fires the
operation PUSH OBJECT in order to signal to its controlled components to adequate their behavior;

• tooMuchTasks VIOL if the input rate needs to be decreased: the top-manager takes the same action
but modifies the error code signalled to its controlled components.

GridCOMP FP6-034442 page 34 of 38 D.NFCF.05

The input component is connected to the top-manager by binding the commit-value port. Since the
input component is a primitive component, it interacts with the top-manager through a not-functional
port implementing the gridcomp.AutonomicServerManager interface, as documented by its ADL de-
scription:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name = "gridcomp.example.active.twolevels.adl.input"

extends = "gridcomp.PrimitiveController">

<!-- functional interface that will be bound to the farm -->

<interface signature = "gridcomp.example.active.twolevels.LineServer"

role = "client"

name = "lineserver-client"/>

<!-- NOT functional interface that will be bound to the top-manager -->

<interface signature = "gridcomp.AutonomicServerManager"

role = "server"

name = "set-rate-server"/>

<content class="gridcomp.example.active.twolevels.InputImpl"/>

<virtual-node name="input-node" cardinality="single"/>

</definition>

The methods implementing the AutonomicServerManager in the InputImpl.java class describes how the
component reacts to the top-manager signals, i.e. how it decreases or increases the time spent between
sending two successive tasks and here represented by the value idt :

public GenericTypeWrapper<Object> commitValue(GenericTypeWrapper<Object> qosValue) {

// get the value sent by the top-manager

float increment = ((Integer) qosValue.getObject()).floatValue();

if (increment != 0) {

Float idtf = new Float(idt);

System.out.println("Input: reconf - difference "+(increment*idtf/100));

// the actual increment is given as a percentage of the current idt

idtf += (increment*idtf/100);

idt = idtf.intValue();

if (idt<0) {

idt=1;

}

}

else

// no actions are taken

System.out.println("Input: reconf - difference ZERO");

System.out.println("Input: reconf - new sleep time (ms) "+idt+

", (tasks/s) "+(1000.0/((float) idt)));

Integer ret = new Integer(remaining_tasks);

return (new GenericTypeWrapper<Object>(ret));

}

Just to provide an example, let us take a look to the rule defining an increasing of the input rate in
the top-manager QoS contract:

rule "detectViolationLow"

when

$remainingtasks : PushObjectResultBean()

GridCOMP FP6-034442 page 35 of 38 D.NFCF.05

$exception : ViolationBean(value == ManagersConstants.notEnoughTasks_VIOL)

then

$exception.setData(new Integer(-50)); // decrease by 100%

$exception.fireOperation(ManagerOperation.PUSH_OBJECT);

System.out.println("========== TopMan: task remaining "+$remainingtasks.getValue());

$exception.setValue(ManagersConstants.No_VIOL);

update($exception);

end

The involved beans are PushObjectResultBean that carries an estimation of the remaining tasks and
ViolationBean that collects the violation messages arriving from the farm through the raise-violation
port. Once the notEnoughTasks VIOL violation is detected, the manager defines a valuable time decre-
ment for the input component and sends it by firing a PUSH OBJECT action (we recall that this action
sends objects via the commit-value port to which the input component is bound).

6.7 Guidelines for writing a top-manager based application

First of all, it must be taken into account that writing a two-level management application means
providing a ”special” component with management, not-functional responsibilities. Thus, the first step
is to provide the ADL description and the implementation of such component considering that:

1. the ADL description must extend gridcomp.manager.GenericAutonomicManager and include the
gridcomp.manager.AutonomicManagerAttributeController controller to set some initial attributes
(see Section 6.2 for further details);

2. the implementation class must implement org.objectweb.proactive.RunActive and all the not-
functional interfaces needed to support the multi-level management, depending on the not-functional
interfaces defined in the ADL description;

3. its behavior will be driven by a ad hoc QoS contract that must be provided as input, following all
the characteristics and rules of the contracts already detailed for the BeSke components in Section
3;

4. the not-functional interfaces provided by the top-manager can be selected (i.e. they are all optional
interfaces) among:

• raise-violation: to collect violation messages from the lower level

• commit-contract: to send a brand new contract to a component belonging to the lower level

• commit-value: to send new values (i.e. QoS performance requirements) referring the contract
currently held by a component belonging to the lower level

• recv-mult: to send new values to all the components belonging to the lower level in multicast
mode.

5. the top-manager is bound to its child component in the canonical manner: the BeSke components
are already equipped with the optional not-functional port supporting the multi-level management,
while a primitive component should be explicitly provided with the not-functional interfaces needed
to treat the interaction both at ADL and implementation level.

GridCOMP FP6-034442 page 36 of 38 D.NFCF.05

7 Conclusion and work in progress

We presented the autonomic features related to the GCM implementation of the behavioural skeleton
farm and map given on top of ProActive 3.9. As the traditional skeleton paradigm, the basic idea is to
provide the user with a set of behavioural skeletons, i.e. components whose non-functional behaviour is
pre-defined, while the functional behaviour is parametrically specified by the user.

Since the non-functional behaviour of such component is pre-defined, we are able to provide a manager
driving the behaviour with respect to the user’s needs specified through a QoS contract at running time.

Successive development of the skeleton will include:

• unifying the programming methodology of the farm and the map. In particular, we will describe
the first in a more parametric way, allowing the definition of just a worker ADL file and not the
set currently required;

• extending or overwriting the manager of the provided skeleton in order to add/change manager
capabilities while keeping the skeleton structure and behaviour;

• adding new autonomic operation to both the active and the passive level in order to increase the
adaptive power of pre-existent or new skeletons;

• adding new controllers in order to wide the spectrum of autonomic operations at passive level as
well as monitoring capabilities.

• extending the multi-level mechanism with new operations and monitoring conditions

Besides the new Priority Controller introduced in ProActive3.9 we introduced some new controllers for
components to implement the effector and the sensor of the behavioural skeletons (as an example the
monitor controller). These controllers strictly depend on the Proactive implementation of components,
and they are generic enough to be reusable by other BeSke programmers (exploiting GCM/PROACTIVE
implementation).
However, we are working for moving the code onto ProActive 4.0, aiming at using the monitoring features
directly offered by the framework.

GridCOMP FP6-034442 page 37 of 38 D.NFCF.05

References

[1] Marco Aldinucci, Sonia Campa, Marco Danelutto, Patrizio Dazzi, Peter Kilpatrick, Domenico
Laforenza, and Nicola Tonellotto. Behavioural skeletons for component autonomic management
on grids. In CoreGRID Workshop on Grid Programming Model, Grid and P2P Systems Architec-
ture, Grid Systems, Tools and Environments, Heraklion, Crete, Greece, June 2007.

[2] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi, Patrizio Dazzi, Domenico
Laforenza, Nicola Tonellotto, and Peter Kilpatrick. Behavioural skeletons in GCM: autonomic
management of grid components. In Didier El Baz, Julien Bourgeois, and Francois Spies, editors,
Proc. of Intl. Euromicro PDP 2008: Parallel Distributed and network-based Processing, pages 54–63,
Toulouse, France, February 2008. IEEE.

[3] Marco Aldinucci, Sonia Campa, Patrizio Dazzi, and Nicola Tonellotto. D.NFCF.01 – non functional
component subsystem architectural design. http://gridcomp.ercim.org/, June 2007.

[4] Marco Aldinucci, Sonia Campa, Patrizio Dazzi, and Nicola Tonellotto. D.NFCF.02 – non functional
component subsystem architectural design (code). http://gridcomp.ercim.org/, June 2007.

[5] Marco Aldinucci, Sonia Campa, Patrizio Dazzi, Nicola Tonellotto, and Giorgio Zoppi. D.NFCF.03
– methodology to derive performance models for component and composite components. http:

//gridcomp.ercim.org/, June 2008.

[6] Marco Aldinucci, Sonia Campa, Patrizio Dazzi, Nicola Tonellotto, and Giorgio Zoppi. D.NFCF.04
– nfcf prototype and early documentation. http://gridcomp.ercim.org/, June 2008.

[7] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable D.PM.04 – Basic
Features of the Grid Component Model (assessed), February 2007. http://www.coregrid.net/

mambo/images/stories/Deliverables/d.pm.04.pdf.

[8] JBoss rules home page. http://www.jboss.com/products/rules, 2008.

[9] ObjectWeb Consortium. The Fractal Component Model, Technical Specification, 2003.

[10] Thomas Weigold, Peter Buhler, Jeyarajan Thiyagalingam, Artie Basukoski, and Vladimir Getov.
Advanced grid programming with components: A biometric identification case study. In Proc. of the
32nd Intl. Computer Software and Applications Conference (COMPSAC), pages 401–408, Turku,
Finland, July 2008. IEEE.

GridCOMP FP6-034442 page 38 of 38 D.NFCF.05

