
Project no.FP6-034442

GridCOMP

Grid programming with COMPonents: an advanced component platform for an
effective invisible grid

STREP Project

Advanced Grid Technologies, Systems and Services

D.NFCF.04 – NFCF prototype and early documentation

Due date of deliverable: May 31th, 2008

Actual submission date: June 25, 2008

Start date of project: 1 June 2006 Duration: 30 months

Organisation name of lead contractor for this deliverable: UNIPI

Project co-funded by the European Commission within the Sixth Framework Programme
(2002–2006)

Dissemination level
PU Public PU

Keyword list: autonomic management, component controller, GCM, behavioural skeleton, task
farm, data parallel
Responsible Partner: UNIPI

MODIFICATION CONTROL
Version Date Status Modifications made by

0 6 June 2008 Draft Sonia CAMPA
1 8 June 2008 Draft Marco ALDINUCCI
2 9 June 2008 Draft Marco ALDINUCCI
3 24 Jun 2008 Final Marco ALDINUCCI

Deliverable manager

• Marco Aldinucci, UNIPI

List of Contributors

• Sonia Campa, UNIPI

• Patrizio Dazzi, ISTI-CNR

• Nicola Tonellotto, ISTI-CNR

• Giorgio Zoppi, UNIPI

List of Evaluators

• Françoise Baude, INRIA

• Rajkumar Buyya, U. MELBOURNE

Executive Summary The D.NFCF.01 deliverable [3] of the GridCOMP project, provides an
architectural specification of a GCM autonomic component [4]. A GCM autonomic component is
a component exploiting two levels of adaptivity: i) a passive level, in which autonomic operations
are provided as a set of limited and well-defined primitives; ii) an active level, in which the
adaptive behaviour of the component is leaded by a manager who takes care of planning and
taking adaptive decisions.

The current deliverable is intended to be a tutorial concerning the step-by-step usage of
the second year prototype version of a GCM autonomic components implementation we have
developed in the GridCOMP project context, focusing on behavioural skeleton. Behavioural
skeletons abstract component self-management in component-based design as design patterns
abstract class design in classic OO development. Thus, behavioural skeleton describe recurring
patterns of component assemblies that can be equipped with current and effective management
strategies (as the ones defined in D.NFCF.03 to which this document is related) with respect to
a given management goal provided as a Quality of Service (QoS) contract.

All the examples and use-cases described in this tutorial are used to illustrate the usage of
the autonomic management API. The examples are a part of the source code distributed as a
zip archive with the current document.

GridCOMP FP6-034442 page 2 of 31 D.NFCF.04

Contents

1 Introduction 4
1.1 Structure of the code . 5

2 Getting started 5
2.1 Platform requirements . 5
2.2 Installing the code . 6
2.3 Compiling the code . 6
2.4 Running your first example . 7

3 Programming rationale behind behavioural skeletons 7

4 Implementing a data parallel behavioural skeleton 8
4.1 Stateful data parallel skeleton . 8

4.1.1 Semantics . 8
4.1.2 The main application structure . 9
4.1.3 The reconfiguration process . 11
4.1.4 Running the example . 12

4.2 Stateless data parallel skeleton: the IBM use-case 14
4.2.1 Semantics . 15
4.2.2 The main application structure . 15
4.2.3 Running the example . 18
4.2.4 Guidelines for using the stateless data parallel skeleton 20
4.2.5 Guidelines for using the stateful data parallel skeleton 21

5 Implementing a farm behavioural skeleton 21
5.1 Farm skeleton at passive level: the Mandelbrot set 21

5.1.1 Semantics . 21
5.1.2 The main application structure . 21
5.1.3 Running the example . 24
5.1.4 Guidelines for using the farm skeleton at passive level 25

5.2 Farm skeleton at active level: the DiCom use-case 25
5.2.1 Semantics . 26
5.2.2 The main application structure . 26
5.2.3 Running the example . 28
5.2.4 Guidelines for using the farm skeleton at active level 29

6 Conclusion and work in progress 29

GridCOMP FP6-034442 page 3 of 31 D.NFCF.04

1 Introduction

The objective of this tutorial is to illustrate how to design, to compile and run an autonomic
application defined as an assembly of autonomic components. The underlying programming
model is the one provided by the Grid Component Model (GCM) [4], which design has been
inspired by the Fractal component model [6]. The reference implementation of GCM considered
in the presented examples is developed on top of the ProActive middleware ver. 3.9 [7].

The tutorial focuses particularly on the usage of behavioural skeletons, which are high-order,
parametric component assemblies. These skeletons can be equipped with specialised management
strategies driven by pre-defined performance goals [1, 2].

In this document, we discuss the functional replication skeleton family, which enables the
application designer to easily exploit a dynamically variable number of replicas of a guest (prim-
itive or composite) component. The farm and data parallel skeletons are instances of the
functional replication skeleton family.

The farm skeleton realises the parallel computation of independent tasks parallel pattern,
whereas the data parallel skeleton exploit the homonyms pattern. These skeletons are re-
alised in GCM as particular composite components that exploit a set of autonomic controllers
implementing the protocols for the correct dynamic adaptation of the skeleton (e.g. life cycle,
content, binding, etc.). In particular, adaptation operations are exposed by the Autonomic Be-
haviour Controller (ABC) of the component [2]. These operations can be used to dynamically
steer the component behaviour (i.e. passive autonomicity).

Behavioural skeletons (a.k.a. BeSke) are obtained by equipping skeletons with an autonomic
manager (see Fig. 1) exploiting a proper management goal. Truly autonomic components can
be obtained as instances of the behavioural skeletons (i.e. active autonomicity).

Figure 1: Autonomic computing control loop

The autonomic management happens according to four successive phases. The monitor phase
provides mechanisms to collect, aggregate, filter and correlate details from managed resource
(memory, work load, remote resources, etc.); the analyse phase provides mechanisms to observe
and analyse behavioural or structural changes (for example a change in the work load of a given
machine involved in the application execution); the plan phase provides mechanisms to create
or select a procedure to change the current status of the observed resources; the execute phase
applies such procedures by triggering operations directly at the passive level. All these phases
are conditioned by a (set of) goal that a user could specify by means of a Quality of Service
(QoS) contract.

In this tutorial we will show how farm and data parallel skeleton can be instanced in a set
of use-cases both at the passive and the active level by providing to the manager a set of goals
defined by the user in the form of a contract file.
GridCOMP FP6-034442 page 4 of 31 D.NFCF.04

1.1 Structure of the code

The framework code is distributed as a zipped archive containing four main directories:

• GridComp-Core: contains all the packages representing the core of the frameworks: inter-
faces and abstract classes of controller, managers, autonomic operation, etc.

• GridComp-Manager: contains all the classes needed for the implementation of the autonomic
manager

• GridComp-Farm: contains all the interfaces, abstract and implementation classes related to
the farm behavioural skeleton and its manager implementation

• GridComp-Map: contains all the interfaces, abstract and implementation classes related to
the data-parallel behavioural skeleton and its manager implementation

All these directories are linked to the GridComp-Libs directory collecting all the ProActive,
Fractal and Java library needed to compile and run the code.
The use-cases are represented by the following directories code:

• GridComp-Example: collects a set of applications exploiting both active and passive auto-
nomicity in the farm and data-parallel context. The applications are:

– Mandelbrot set: it’s the classic Mandelbrot application exploiting pure task paral-
lelism in which a set of independent tasks are computed at different level of complexity
by a set of processing elements represented by the workers of a farm

– π calculus: as the previous example, this application adopts a task parallelism patterns
but the structure of the whole application is slightly different

– stateful data parallelism: it is a data parallel application in which the content of
the input data is partitioned and computed by the set of worker components, which
may have an internal state provided the worker components expose a method for
importing and exporting the internal state. In case of skeleton re-configuration, the
state is re-distributed under the coordination of the manager.

– stateless data parallelism: the example is mockup of the IBM use case [8]. Here,
worker components are assumed to be stateless (or including a not disclosed state),
thus in the case of re-configuration the manager does not provide any automatic
way to redistribute the worker state. In the case the worker components exhibit a
not disclosed state, the redistribution of state can be managed by way of functional
interfaces, i.e. providing components with the proper functional ports to manage it.
This management should explicitely programmed by the application designer by way
of the state management interfaces.

• GridComp-Dicom-Use-Case: it’s a real application based on the recognition of breast x-rays
images.

Summarising, the structure of the archive can be seen in Table 1

2 Getting started

2.1 Platform requirements

In order to compile and run the framework you will need Java 1.5 or upper versions. ProActive
3.9 and all the auxiliary libraries are provided within the zipped archive file.

GridCOMP FP6-034442 page 5 of 31 D.NFCF.04

GridComp-Core implementation of the framework core

GridComp-Manager abstract classes, interfaces and ADL files for implementing
the manager

GridComp-Farm abstract classes, interfaces and ADL files for implementing
the farm behavioural skeleton; prototype implementation
of a farm behavioural skeleton supporting active autonomicity

GridComp-Map abstract classes, interfaces and ADL file for implementing
the data parallel behavioural skeleton; prototype
implementation of a data parallel behavioural skeleton
supporting active autonomicity

GridComp-Example
− Mandelbrot evaluation of the Mandelbrot set (autonomic farm)
− pi evaluation of the π approximation (autonomic farm)
− stateless data-parallel data parallel use-case supporting functional reconfiguration
− stateful data-parallel data parallel use-case with functional reconfiguration

GridComp-Dicom Dicom use case example for the recognition of X-ray images

Table 1: Content of the framework distribution.

2.2 Installing the code

In order to install the code, you need to enter your working directory and digit:

~ > tar -xzvf gridcomp.tar.gz

~ > cd gridcomp

~/gridcomp > ls

GridComp-Core GridComp-Farm build.xml

GridComp-DataParallel GridComp-Libs commons.xml

GridComp-Dicom-UseCase GridComp-Manager distribution

GridComp-Examples bin jarlib

Opening the archive will lead to the creation into the working directory of a directory called
gridcomp containing the framework implementation directory and other files for supporting
compilation and running.

2.3 Compiling the code

The compilation process is supported by the ant compiling system. Thus, in order to compile
the framework, it suffices to type

~/gridcomp > ant

which will invoke the compilation steps programmed into the build.xml file. Before launching
the compilation, make sure that your JAVA HOME environment variable is correctly set.

If the user wants to compile one of our example application only, he/she need to enter the
directory GridComp-Examples and to call the compilation process from the related ant build file,
thus:

~\gridcomp > cd GridComp-Examples

~\gridcomp\GridComp-Examples > ant build-passive-mandelbrot

However, when invoked without parameters, ant will compile all the provided example, by
default1.

1In order to know which target type to compile and launch the other examples, take a look to the build.xml
file in the GridComp-Example directory.

GridCOMP FP6-034442 page 6 of 31 D.NFCF.04

2.4 Running your first example

Once the user has compiled the code, she/he can simply invoke its execution through the ant
mechanism. We provide two type of deployment descriptors for driving the execution phase:
the local-deployment.xml file that allows to deploy the application on your local machine
and the distrib-deployment.xml descriptor that is configured to deploy the application on a
cluster. In both cases, you simply need to invoke the execution process on the target representing
the application you are interested in. For example, in order to launch the evaluation of the
Mandelbrot set, type:

~/gridcomp/GridComp-Example > ant local-deploy-mandelbrot

3 Programming rationale behind behavioural skeletons

Behavioural skeletons represent an easy and abstract way to express well-known parallel compu-
tation patterns by using pre-defined composite component. The main advantage of using such
kind of component provided with specific behaviour is that the knowledge behind their behaviour
specification allows to pre-define autonomic operation in order to adapt the component structure
and/or behaviour depending on events triggered by the external or internal environment.
All our behavioural skeletons come along with a pre-defined set of autonomic controllers ensuring
the passive level of autonomicity and a version of the autonomic manager related to the specific
skeleton. The manager is a component with dedicated functions: it implements the autonomic
cycle (see Fig.1) by using when <condition> then <action> rules while the application runs. Its
role is to periodically evaluate specific monitored conditions and, if one or more holds, to take
the specific autonomic reaction related to the condition occurred.

The type of information the manager has to check is provided through the quality of service
(QoS) contract. The contract is a set of requirements that the user needs to be satisfied during
the application lifetime and can be performance requirements as well as other qualitative and/or
quantitative information about resource consumption, data sizes, network bandwidth or latency
etc.

The contract is represented (and evaluated) in the manager as a list of JBoss rules [5]. In
fact, the contract is a JBoss file collecting a set of when <condition> then <action> rules:
each AutonomicLoopCycle seconds the manager queries the set of rules and executes the actions
related to those matching condition. An example of a QoS contract is given below:

package gridcomp.manager

import gridcomp.manager.beans.*;

import gridcomp.manager.operations.*;

import gridcomp.operation.*;

import gridcomp.manager.map.impl.PartitionSizeBean;

[methodMonitor="searchMatch"]

rule "CheckHigherBound"

when

$arrivalBean : PartitionSizeBean(value >=10)

then

$arrivalBean.fireOperation(ManagerOperation.ADD_EXECUTOR);

end

[methodMonitor="getService"]

rule "CheckLowerBound"

when

$arrivalBean : PartitionSizeBean(value < 9)

then

$arrivalBean.fireOperation(ManagerOperation.REMOVE_EXECUTOR);

end

In this contract (see gridcomp/example/<example name>/impl/rules.drl), the manager is
asked to monitor two methods in the interface of the component it controls, searchMatch and
GridCOMP FP6-034442 page 7 of 31 D.NFCF.04

getService. In other words, the manager checks if any of the rules in the QoS contract applies
each time one of the methods marked in the contract are called. If the condition holds, the rule
is executed. In this example, both rules require that the same Java Bean PartitionSizeBean
is executed and the result stored in the variable value is checked for the given condition. If
value is higher or equal to 10, then the autonomic operation ADD EXECUTOR, belonging to the
range of operations provided by the manager, will be invoked; else, the REMOVE EXECUTOR will be
executed.

The application developer can exploit the manager functionality by simply writing a QoS
contract as a list of JBoss rules. This requires the knowledge of adaptation operations and
monitor variables exposed by the particular component. Notice however that, if the component
is an instance of a behavioural skeleton (BeSke), these operations and variables are typically
pre-defined (and documented) as part of the BeSke definition.

The set of autonomic operations currently provided are listed in gridcomp.manager.operation
and are:

• ADD EXECUTOR: adds a new (local or remote) executor to the skeleton configuration (all
BeSke).

• REMOVE EXECUTOR: removes a (local or remote) executor from the skeleton configuration
(all BeSke).

• BALANCE LOAD: balances the load of tasks to be executed by a set of executors by reassigning
them with respect to the queue distribution defined by the ProActive framework (farm
only).

• RAISE VIOLATION: signals that a violation contract occurred (all BeSke).

• SETUP: defines new configuration features of the skeleton (all BeSke).

• GET EXECUTORS: provides the number of executors currently involved in the computation
(all BeSke).

4 Implementing a data parallel behavioural skeleton

In this section we will show how an application exploiting a data parallelism pattern can be
programmed with GCM behavioural skeleton into the framework. We will detail two cases:
the first relates to a data parallel application in which the reconfiguration (i.e. the adding and
removing of components as processing elements of the behavioural skeleton) is completely driven
by the autonomic manager without any kind of human intervention. The second case relates
to a data parallel skeleton whose processing elements are stateless components. In case of a
reconfiguration, the redistribution of the input data has to be explicitly treated by the user.

4.1 Stateful data parallel skeleton

All the code referenced in the sequel belongs to the package gridcomp.example.statefulmap.*,
if not differently specified. Moreover, the application implements the contract file rules.drl
(see Section 3) defined in gridcomp.example.statefulmap.impl.

4.1.1 Semantics

The stateful data parallel behavioural skeleton is depicted in Fig. 2 The composite component
representing the skeleton has been designed focusing on the following requirements:

• all the provide ports of the composite must be multicast ports

GridCOMP FP6-034442 page 8 of 31 D.NFCF.04

S

AM

ABC

worker

ABC

S

Figure 2: Stateful data-parallel BeSke structure.

• the user interfaces that define the signature of each multicast port can adopt all the distri-
bution policies provided by ProActive (BROADCAST, ONE TO ONE, ROUND ROBIN). However,
in order to define a port exploiting the pure data parallel behaviour (i.e. the input task is
split among the available processing elements of the skeleton), the port must be configured
to adopt the gridcomp.map.port.MapDispatch as distribution policy.

• all the multicast port belonging to the composite are managed by the manager and the
autonomic controller

In the following section, we will show how such composite can be used within the user code.

4.1.2 The main application structure

In the stateful example, the main application instantiates the composite by the following piece
of code:

Map ctx = new HashMap();

String root;

root = new String("gridcomp.example.statefulmap.adl.testcase");

cxt.put("worker", "gridcomp.example.statefulmap.adl.worker");

cxt.put("rulespath",

"../GridComp-Examples/src/gridcomp/example/statefulmap/impl/rules.drl");

Component testcase = (Component) f.newComponent(root,ctx);

A Map object is instanced in order to provide two arguments to the loading component engine
of ProActive: the arguments are respectively

• the name in the package of the ADL file representing the worker (i.e. the component
working on a single partition of the partitioned state)

• the path to the user QoS contract in the file system

Both the arguments are given as input to the component engine of ProActive together with the
name of the ADL file representing the application component.

The ADL file representing the application component is defined as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL

2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

GridCOMP FP6-034442 page 9 of 31 D.NFCF.04

<definition name="gridcomp.example.statefulmap.adl.testcase"

extends="gridcomp.CompositeController"

arguments="worker,rulespath">

<interface signature="gridcomp.map.port.MulticastTestItf1"

role="server"

name="runTestItf-01"/>

<interface signature="gridcomp.map.port.MulticastTestItf2"

role="server"

name="runTestItf-02" />

<component name="multicastComposite"

definition="gridcomp.map.doubleMulticast(${worker},${rulespath})"/>

<binding client="this.runTestItf-01"

server="multicastComposite.multicastServerItf-01"/>

<binding client="this.runTestItf-02"

server="multicastComposite.multicastServerItf-02"/>

<controller desc="composite"/>

</definition>

The application is a composite extending the gridcomp.CompositeController composite:
such extension allows the user to automatically configure a set of controllers and interceptors of
GCM composite component. The composite encapsulates the data parallel behavioural skeleton
(multicastComposite component) that is directly bound to the two input interfaces provided
by the application component as its “entry-point”. In other words, the application provides the
same server port provided by the data parallel behavioural skeleton. The skeleton is instanced
passing it two arguments: the name of the ADL file of the worker and the path to the QoS
contract. These arguments are instantiated at running time by the component creation engine
and the ADL arguments mechanism.

The data parallel skeleton In this example, the user instantiates the gridcomp.map.double-
Multicast version of the behavioural skeleton that exploits the following features (see fig. 2):

• the skeleton provides two (multicast) server ports

• the signatures are defined by the gridcomp.map.port.MulticastTestItf1 as well as the
gridcomp.map.port.MulticastTestItf2 classes, respectively

• the first port exploits a pure data parallel semantics, i.e. it receives a list of items as
inputs, splits it in a number of partition equal to the number of available processing ele-
ments (workers) and assigns a partition to each processing element; we will refer it as an
initialisation port

• the second port exploits the BROADCAST distribution policy, as defined by the ProActive
run-time system.

• the results are collected in an RMI style by the server port, themselves.

• as mentioned above, the skeleton is parametric with respect to the name of the ADL file
describing an inner worker (the set of components hosted by the composite data parallel
component) and the pathname of the QoS contract.

The processing element (worker) The second ADL file the user must provide is the one
describing the component that will actually instance the data parallel skeleton working on a slice
of the partitioned input data. In gridcomp.example.stateful.adl.worker the user can access
the descriptive ADL file that appears as follows:
GridCOMP FP6-034442 page 10 of 31 D.NFCF.04

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.statefulmap.adl.worker"

extends="gridcomp.map.controller.DPWorkerController">

<interface signature="gridcomp.map.controller.operation.ReconfigSupport"

role="server"

name="reconfig"/>

<interface signature="gridcomp.example.statefulmap.impl.ServerTestItf1"

role="server"

name="serverItf-worker-01"/>

<interface signature="gridcomp.example.statefulmap.impl.ServerTestItf2"

role="server"

name="serverItf-worker-02"/>

<content class="gridcomp.example.statefulmap.impl.ServerImpl"/>

</definition>

Since users want to exploits the autonomic reconfiguration features offered by the data par-
allel skeleton, their worker must provide the autonomic support. In this sense, they simply need
to define as worker a component that extends the grid.map.controller.DPWorkerController:
such extension enriches the component definition with a set of pre-defined controllers and inter-
ceptors that provide the passive autonomicity level, at least, and all the needed hooks for the
skeleton manager to interact with the worker.

4.1.3 The reconfiguration process

The reconfiguration is a three-steps process:

1. as first step, the partition already assigned to the current workers are collected at passive
level

2. the reconfiguration proceeds with adding or removing a worker

3. as last step, the state collapsed in step 1 is partitioned and the partitions are distributed
again among the new set of workers

However, since the state is part of the business code, the user is in charge of “instructing” the
manager about how to serialise and de-serialise the state, after that the initialisation port has
distributed it among the processing elements of the data parallel skeleton. The information
about serialisation/de-serialisation is provided by the user implementing the

gridcomp.map.controller.operation.ReconfigSupport

interface as part of the data parallel skeleton worker.

package gridcomp.map.controller.operation;

import java.util.List; import gridcomp.map.Task;

public interface ReconfigSupport {

public static final String CONTROLLER_NAME = "dpworker-controller";

public void setStatus(List<Task> tsl);

public List<Task> provideStatus();

}

Such interface requires the implementation of two methods:

• set status(List <Task> tsl): represents the de-serialisation process and is activated
when, after a reconfiguration, the worker receives a new partition

GridCOMP FP6-034442 page 11 of 31 D.NFCF.04

• provideStatus(): represents the serialisation process and is activated when, before a
reconfiguration, the worker has to “commit” its partition waiting for a new assignment (if
any).

The other two interfaces provided by the user in the worker component are functional inter-
faces and, in particular, they are the interfaces bound to the multicast ports of the data-parallel
skeleton. Thus, their signature is coherent with the ProActive specification:

package gridcomp.example.statefulmap.impl;

import gridcomp.map.Task;

import java.util.List;

public interface ServerTestItf1 extends ServerTestItf1 {

public Task getService(Task t);

}

and

package gridcomp.example.statefulmap.impl;

import gridcomp.map.Task;

import java.util.List;

public interface ServerTestItf2 extends ServerTestItf2 {

public Task searchMatch(List<Task> list);

}

4.1.4 Running the example

In order to run the example, the user has to follow the steps detailed in Section 2.3 and 2.4.

Running platform In our case, we run the example on a cluster called pianosau and the
application has been deployed to run on 8 nodes of the cluster called u12, u13, etc., plus pianosau
itself as local machine. In order to run the application, from the GridComp-Examples directory,
the user has to type:

~/gridcomp/GridComp-Examples/ > ant remote-deploy-stateful-map

for a remote execution, or

~/gridcomp/GridComp-Examples/ > ant local-deploy-stateful-map

for running the application on the local machine.

Application behaviour The application implements a two-phase protocol:

1. in the first stage, a list of 60 tasks (Integer values) is provided to the getService interface
in order to be split among the available workers (5 at starting time)

2. in the second stage, a stream of values are sent to the worker in order to check if they
match in any position of the database

The protocol emulates the behaviour of the IBM use-case in which a stream of fingerprints is
sent to a distributed database for the recognition process. Each fingerprint (here represented as
an Integer value) could match one and only one position of the database distributed among the
available processing elements.

Thus, the execution starts with the distribution of the data-set to the workers followed by
the first matching queries:

GridCOMP FP6-034442 page 12 of 31 D.NFCF.04

~/gridcomp/GridComp-Examples/ > ant local-deploy-stateful-map

remote-deploy-stateful-map:

///

Runnning on a dataset of 60 tasks......................

///

[WORKER-0 on u12] Receiving partition [12-23]

[WORKER-0 on u13] Receiving partition [24-35]

[WORKER-0 on u19] Receiving partition [48-59]

[WORKER-0 on u20] Receiving partition [0-11]

[WORKER-0 on u14] Receiving partition [36-47]

[WORKER-0 on u14] Search task 22 in partition [36-47]

[WORKER-0 on u19] Search task 22 in partition [48-59]

[WORKER-0 on u13] Search task 22 in partition [24-35]

[WORKER-0 on u20] Search task 22 in partition [0-11]

[WORKER-0 on u12] Search task 22 in partition [12-23]

----------- Item 22 FOUND ---------

In this running example, machines u13, u19, u14, u12 and u20 are involved to hosts a worker
each (identified by the ID 0), while the manager and the main application component are placed
on the user local host by default. Each worker gets a partition of 12 elements (note that these
number has been selected for the sake of simplicity) and then start to search in their partition a
match with the task they receive. If one of the worker recognise the task, an “ACK” message is
sent to the main; if the main receives just an “ACK” message among the ones received by the
skeleton on its multicast port, the message Item ... FOUND will be printed.

Reconfiguration In the meanwhile, the manager has been started. It accesses the rules file
through the JBoss rules engine and detects if one or more rules hold, firing the related action.
Thus, during the running the user could have an output like the following one:

[MapAutonomicManager] - Detecting information from the enviroment

INFO: Setting QoS information for method searchMatch

[MapAutonomicManager] - Valuating information by fireAllRules()

ADD_EXECUTOR

The first two lines inform the user that the monitoring engine is checking is the observed
method searchMatch fits the required QoS condition. The fourth line informs about the possible
fire of a rule and the fifth row gives the action that will be taken as a consequence of a rule firing.
Thus, the execution proceeds with the following lines:

========== [Start NF-MapAddWorker] ======================

[MapAddWorker] Binding between multicastServerItf-02 and

serverItf-worker-02 completed......

[MapAddWorker] Binding between multicastServerItf-01 and

serverItf-worker-01 completed......

==

Redistribution of dataset from 5 components to 6 components

==

[MapAddWorker] ====== COLLECT partitions from 5 workers ======

[WORKER-0 on u20] providing the state to the controller...

[WORKER-0 on u12] providing the state to the controller...

[WORKER-0 on u13] providing the state to the controller...

[WORKER-0 on u14] providing the state to the controller...

[WORKER-0 on u19] providing the state to the controller...

GridCOMP FP6-034442 page 13 of 31 D.NFCF.04

[MapAddWorker] ===== SPLIT dataset [0-59]

Partition 0: [0-9]

Partition 1: [10-19]

Partition 2: [20-29]

Partition 3: [30-39]

Partition 4: [40-49]

Partition 5: [50-59]

[MapAddWorker] == DISTRIBUTE 60 tasks to 6 workers ==

[WORKER-0 on u20] updating the state from the controller....

[WORKER-0 on u12] updating the state from the controller....

[WORKER-0 on u13] updating the state from the controller....

[WORKER-0 on u14] updating the state from the controller....

[WORKER-0 on u19] updating the state from the controller....

[WORKER-21 on pianosau] updating the state from the controller....

[MapAddWorker] ========= Redistribution COMPLETED ============

================= [End NF-MapAddWorker] =======================

The ADD EXECUTOR operation has been fired and in the context of the manager, it means
invoking the MapAddWorker passive autonomic operation. Such an operation creates a new
component, binds it to the two skeleton multicast ports and starts the reconfiguration phase,
consisting in:

1. COLLECTING and collapsing all the partitions from the pre-existent workers. As men-
tioned in Section 3 this step requires that the workers provide an autonomic support and
implements the ReconfigSupport interface in order to correctly serialise the data.

2. SPLIT the data with respect to the new available workers

3. DISTRIBUTE the new partitions among the new available workers. As mentioned in
Section 3, also this step requires that the workers provide an autonomic support and
implements the ReconfigSupport interface in order to correctly de-serialise the data

Note that, the new component in this run has been placed on the host pianosau.di.unipi.it
and it has been introduced in the computation process as demonstrated by the successive match-
ing requests that will appear as follows:

[WORKER-0 on u19] Search task 16 in partition [40-49]

[WORKER-0 on u14] Search task 16 in partition [30-39]

[WORKER-21 on pianosau] Search task 16 in partition [50-59]

[WORKER-0 on u12] Search task 16 in partition [10-19]

[WORKER-0 on u20] Search task 16 in partition [0-9]

[WORKER-0 on u13] Search task 16 in partition [20-29]

----------- Item 16 FOUND ---------

As it can be seen, the new worker WORKER-21 on pianosau is the assigner of the partition
spacing from position 50 to 59.

4.2 Stateless data parallel skeleton: the IBM use-case

All the code referenced in the sequel can be found in the package gridcomp.example.statelessmap.*,
if not differently specified. Moreover, the application implements the contract file (see Section
3) rules.drl defined in gridcomp.example.statelessmap.impl.
GridCOMP FP6-034442 page 14 of 31 D.NFCF.04

4.2.1 Semantics

The stateless data parallel behavioural skeleton is depicted in Fig. 3 Differently from the stateful

worker

AM

ABC

worker

S

SFingerPrint

Producer

Figure 3: Stateless data-parallel BeSke structure

application, here the data parallel skeleton is a component belonging to a composite encapsulating
three sub-components: the Producer that is in charge of building the data-set to be evaluated
by the data parallel skeleton; the FingerPrint that is in charge of producing the stream of
similar-fingerprints to be recognised by the data-parallel skeleton; the data parallel skeleton
itself.
The behavioural skeleton is the same already presented in the previous section and, thus, it
focuses on the same semantics requirements; however, in this case, the workers evaluating a
partition of the input data-set are stateless unit of computation. From the components point of
view, they do not (need to) provide autonomic support. As a consequence, after a reconfiguration,
the redistribution of the data set must be functionally managed by explicit user operations. In
this example, we will show how to deal with a functional reconfiguration (i.e. with passive
autonomicity).

In the following section, we will show how such composite can be used in the user code.

4.2.2 The main application structure

In the stateless example, the main application instantiates the composite by the following piece
of code (see Section 4.1.2 for further explanations):

Map ctx = new HashMap();

String root;

root = new String("gridcomp.example.statelessmap.adl.testcase");

ctx.put("worker", "gridcomp.example.statelessmap.adl.worker");

ctx.put("rulespath",

"../GridComp-Examples/src/gridcomp/example/statelessmap/impl/rules.drl");

Component testcase = (Component) f.newComponent(root,ctx);

The ADL file representing the component application is defined as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.statelessmap.adl.testcase"

extends="gridcomp.CompositeController"

GridCOMP FP6-034442 page 15 of 31 D.NFCF.04

arguments="worker,rulespath">

<interface signature="gridcomp.example.statelessmap.impl.Producer"

role="server"

name="runTestItf"/>

<!-- first stage -->

<component name="producer"

definition="gridcomp.example.statelessmap.adl.producer"/>

<!-- second stage -->

<component name="fingerprint"

definition="gridcomp.example.statelessmap.adl.fingerprint"/>

<!-- the map -->

<component name="multicastComposite"

definition="gridcomp.map.doubleMulticast(${worker},${rulespath})"/>

<!-- the bindings -->

<binding client="this.runTestItf"

server="producer.runProducer"/>

<binding client="producer.initItf"

server="multicastComposite.multicastServerItf-01"/>

<binding client="producer.startfinger"

server="fingerprint.starter"/>

<binding client="fingerprint.clientItf"

server="multicastComposite.multicastServerItf-02"/>

<binding client="fingerprint.redistribute"

server="producer.runRedistribute"/>

<controller desc="composite"/>

</definition>

As already mentioned in Section 4.1, the root component extends gridcomp.Composite-
Controller to provide autonomic features to the component; however, with respect to the state-
ful example, it encapsulates three sub-components, producer, fingerprint, multicastComposite
each representing the three computational units defined in the above section.

Since the data-parallel skeleton exploits the same semantics as the one showed in Section
4.1.2 and that all the observations given above still apply here, we will concentrate our attention
on the producer and the fingerprint component.
The producer component is described by the following user provided ADL file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.statelessmap.adl.producer"

extends="gridcomp.PrimitiveController">

<interface signature="gridcomp.example.statelessmap.impl.Producer"

role="server"

name="runProducer"/>

<interface signature="gridcomp.map.port.MulticastTestItf1"

role="client"

name="initItf"/>

<interface signature="gridcomp.example.statelessmap.impl.FingerPrint"

role="client"

GridCOMP FP6-034442 page 16 of 31 D.NFCF.04

name="startfinger"/>

<interface signature="gridcomp.example.statelessmap.impl.Redistribute"

role="server"

name="runRedistribute"/>

<content class="gridcomp.example.statelessmap.impl.ProducerImpl"/>

</definition>

The producer extends gridcomp.PrimitiveController, in order to be defined as a GCM
component. Functionally speaking it offers four interfaces, namely:

1. runProducer is the hook for the root component to start the application

2. initItf is bound to the data parallel skeleton interface devoted to the distribution phase
of the generated input data-set

3. startfinger is bound to the fingerprint component in order to inform it that an ini-
tialisation phase or a reconfiguration has just terminated

4. runRedistribute is called by to notify the producer that a functional reconfiguration (i.e.
a redistribution of the initial state) is required

On the other hand, the fingerprint component is described by the following user defined ADL
file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.statelessmap.adl.fingerprint"

extends="gridcomp.PrimitiveController">

<interface signature="gridcomp.map.port.MulticastTestItf2"

role="client" name="clientItf"/>

<interface signature="gridcomp.example.statelessmap.impl.FingerPrint"

role="server" name="starter"/>

<interface signature="gridcomp.example.statelessmap.impl.Redistribute"

role="client" name="redistribute"/>

<content class="gridcomp.example.statelessmap.impl.FingerPrintImpl"/>

</definition>

The component exposes three interfaces:

• the server interface starter through which the component is notified by the producer
component that the searching match phase could start

• the client interface clientItf through which the component interact with the data parallel
skeleton in order to ask for a given matching

• the client interface redistribute through which the component notifies to the producer
that a change in the application structure occurred (maybe the data-parallel skeleton man-
ager removed a worker and its partition of data has been lost) and that a reconfiguration
step is needed

The ADL file describing the worker is the same already seen in Section 4.1.2 excepting that
it does not provide the ReconfigSupport interface, since it is not required that the worker offers
autonomic capabilities.

GridCOMP FP6-034442 page 17 of 31 D.NFCF.04

4.2.3 Running the example

The application implements the two-phase (distribution/streaming) protocol already introduced
in Section 4.1.4 but:

1. the producer is in charge of creating a list of 60 task (Integer values) to be sent to the
data parallel skeleton for a parallel computation

2. the skeleton splits the data-set among the available workers

3. the producer notifies to the fingerprint that the splitting phase has been terminated

4. the fingerprint starts pushing matching requests to the skeleton and waits for the set of
answers (one per partition): if a request is tagged differently from “ACK” or “NACK”, it
assumes that a reconfiguration has occurred in the meanwhile and asks the producer for
a new redistribution. In other words, a worker that has just been added to the processing
elements set, signals that he has no “state” to compute on by providing a “fake” tagged
response and the fingerprint is able to recognise it. Conversely, the fingerprint is able to
detect if a worker has been removed from the processing element set as it receives a lower
number of responses than expected.

5. the producer answers to a redistribution request by reapplying again from point 1

Note that the input has been fixed as a list of 60 tasks just for having an easy and friendly way
of presenting the skeleton outcome.

Let us understand how to deal with functional reconfiguration by looking at an execution
trace. The QoS contract to which we will refer looks like the following one:

package

gridcomp.manager import gridcomp.manager.beans.*; import

gridcomp.manager.operations.*; import gridcomp.operation.*; import

gridcomp.manager.map.impl.PartitionSizeBean;

[methodMonitor="getService"]

rule "CheckHigherBound"

when

$arrivalBean : PartitionSizeBean(value >=10)

then

$arrivalBean.fireOperation(ManagerOperation.ADD_EXECUTOR);

end

The only directive the user provides to the manager is to fire the ADD EXECUTOR autonomic
operation (i.e. increase the number of processing elements of the data parallel skeleton) if the
value returned by the Java Bean PartitionSizeBean (i.e. the size of a partition) is greater
than or equal to 10. In other words, the user is asking the manager to add a new processing
element to the skeleton if the partition a processing element is working on is greater than 10 tasks
(possibly because the load on each processing element is still too high for the user’s needs). As a
consequence of the increased number of executors and the redistribution process, each partition
will decrease in size until the rule condition is no longer verified.
Again, in order to run the example, the user has to follows the steps detailed in Section 2.3 and
2.4.
In our case, we run the example on a cluster called pianosau and the application has been
deployed to run on 8 nodes of the cluster called u2-u10, plus pianosau itself as local machine.
In order to run the application from the GridComp-Examples directory, the user has to type:

~/gridcomp/GridComp-Examples/ > ant remote-deploy-stateless-map

for a remote execution, or

~/gridcomp/GridComp-Examples/ > ant local-deploy-stateless-map

GridCOMP FP6-034442 page 18 of 31 D.NFCF.04

for running the application on the local machine.
Thus, the execution starts with the distribution of the data-set to the workers followed by

the first matching queries:

Buildfile: build.xml

remote-deploy-stateless-map:

///

Runnning on a dataset of 60 tasks......................

///

[Worker 0 on u14] Receiving partition [36-47]

[Worker 0 on u12] Receiving partition [12-23]

[Worker 0 on u19] Receiving partition [48-59]

[Worker 0 on u20] Receiving partition [0-11]

[Worker 0 on u13] Receiving partition [24-35]

[ProducerImpl] End of data partitioning!

------- [FingerPrint] Ask for recognition of item 55 -------

[WORKER-0 on u20] Receiving partition [0-11] search for item 55

[WORKER-0 on u19] Receiving partition [48-59] search for item 55

[WORKER-0 on u14] Receiving partition [36-47] search for item 55

[WORKER-0 on u13] Receiving partition [24-35] search for item 55

[WORKER-0 on u12] Receiving partition [12-23] search for item 55

[FingerPrint] Item FOUND!

Eventually, the manager evaluates the conditions defined in the QoS contract, meaning that
the Java Bean PartitionSizeBean is evaluated and if it returns a value that satisfies the QoS
condition, the ADD EXECUTOR operation is fired, causing the execution of the autonomic operation
MapAddExecutor, as can be seen in the following lines:

[MapAutonomicManager] - Detecting information from the environment

Setting QoS information for method getService

[MapAutonomicManager] - Valuating information by fireAllRules()

ADD_EXECUTOR

What follows is related to the execution of the autonomic operation

================== [Start NF-MapAddWorker] =====================

[MapAddWorker] Binding between multicastServerItf-02

and serverItf-worker-02 completed......

[MapAddWorker] Binding between multicastServerItf-01

and serverItf-worker-01 completed......

[MapAddWorker] Stateless computation running, skip redistribution

================== [End NF-MapAddWorker] =======================

The new worker is instantiated and bound to the skeleton multicast interfaces; since the
new worker does not support autonomicity features (or, equally, the pre-existent workers don’t),
the manager can’t define a redistribution of the partition, thus the non-functional operation
terminates and the functional computation proceeds.

------- [FingerPrint] Ask for recognition of item 26 -------

[WORKER-0 on u14] Receiving partition [36-47] search for item 26

[WORKER-0 on u12] Receiving partition [12-23] search for item 26

GridCOMP FP6-034442 page 19 of 31 D.NFCF.04

[Worker 21 on pianosau] no tasks to compute, yet

[WORKER-0 on u20] Receiving partition [0-11] search for item 26

[WORKER-0 on u13] Receiving partition [24-35] search for item 26

[FingerPrint] Item FOUND!

As it can be seen by the output trace, the new worker (allocated on pianosau) is involved
in the computation but he is not able to answer to the matching requests because it does not
hold any partition. As the fingerprint component detects the problem, it ask the producer
component for a redistribution step:

[FingerPrint] Redistribution needed............

[Worker 21 on pianosau] Receiving partition [50-59]

[Worker 0 on u14] Receiving partition [30-39]

[Worker 0 on u12] Receiving partition [10-19]

[Worker 0 on u13] Receiving partition [20-29]

[Worker 0 on u19] Receiving partition [40-49]

[Worker 0 on u20] Receiving partition [0-9]

[ProducerImpl] End of DB RE-partitioning!

At this point, the computation can proceed involving 6 components, holding a given partition
each.

------- [FingerPrint] Ask for recognition of item 26 -------

[WORKER-21 on pianosau] Receiving partition [50-59] search for item 26

[WORKER-0 on u19] Receiving partition [48-59] search for item 26

[WORKER-0 on u20] Receiving partition [0-9] search for item 26

[WORKER-0 on u12] Receiving partition [10-19] search for item 26

[WORKER-0 on u13] Receiving partition [20-29] search for item 26

[WORKER-0 on u19] Receiving partition [40-49] search for item 26

[WORKER-0 on u14] Receiving partition [30-39] search for item 26

[FingerPrint] Item FOUND!

4.2.4 Guidelines for using the stateless data parallel skeleton

The steps a user must follow in order to successfully use the stateless data parallel skeleton can
be summarised as follows:

1. provide the root component description as an extension of the gridcomp.CompositeController
(and any other sub-component he/she wants to use);

2. and provide the worker component description as an extension of the gridcomp.PrimitiveController
providing

3. include in his application definition the gridcomp.map.doubleMulticast version of the
skeleton, caring of using its ports in the right way, as described in Section 4.1.2

4. provide the needed parameters (the ADL file of the worker and the path to the QoS contract
file) to the skeleton at running time

5. treating at functional level the state updates of the workers in case of reconfiguration

If a worker is removed (all but 1 workers can be removed), the user will find a similar
behaviour, consisting in a collecting, splitting and redistribution phase among the remaining
workers.

GridCOMP FP6-034442 page 20 of 31 D.NFCF.04

4.2.5 Guidelines for using the stateful data parallel skeleton

The steps a user must follow in order to successfully use the stateful data parallel skeleton can
be summarised as follows:

1. provide the root component description as an extension of the gridcomp.CompositeController
(and any other sub-component he/she wants to use);

2. and provide the worker component description as an extension of the gridcomp.PrimitiveController
providing, among the others, the gridcomp.map.controller.operation.ReconfigSupport
interface in order to instruct the manager about how serialise/de-serialise the worker state

3. include in his application definition the gridcomp.map.doubleMulticast version of the
skeleton, caring of using its ports in the right way, as described in Section 4.1.2

4. provide the needed parameters (the ADL file of the worker and the path to the QoS contract
file) to the skeleton at running time

5 Implementing a farm behavioural skeleton

5.1 Farm skeleton at passive level: the Mandelbrot set

In this section we will show how an application exploiting a farm parallelism pattern can be
programmed into the framework with GCM behavioural skeletons.

5.1.1 Semantics

We will take the Mandelbrot application in consideration as a model of programming these
patterns of computation: it performs calculations to display dynamically the Mandelbrot frac-
tal image. We will show how passive autonomicity can be expressed in the context of a real
application.

All the code referenced in the sequel belongs to the package gridcomp.example.passive.mandelbrot,
if not differently specified.

5.1.2 The main application structure

The application structure is depicted in Fig. 4

input worker

ABC

output

AM
ABC

Figure 4: Mandelbrot application composite.

The ADL file representing the root component has the following content:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

GridCOMP FP6-034442 page 21 of 31 D.NFCF.04

<definition name = "gridcomp.example.passive.mandelbrot.adl.root"

extends = "gridcomp.CompositeController">

<component name="input"

definition = "gridcomp.example.passive.mandelbrot.adl.input"/>

<component name="farm"

definition = "gridcomp.example.passive.mandelbrot.adl.farm"/>

<component name="output"

definition = "gridcomp.example.passive.mandelbrot.adl.output"/>

<binding client = "farm.collector-client"

server = "output.collector-server"/>

<binding client = "input.lineserver-client"

server = "farm.lineserver-server"/>

<virtual-node name="master-node" cardinality="single"/>

</definition>

This application exhibits a passive autonomicity and the root component encapsulates an
input component producing the stream of task on which evaluate the Mandelbrot function, the
farm component and the output component that is in charge of providing a graphical output to
the computation.

The input component The input component is defined as follows in the input.fractal file

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name = "gridcomp.example.passive.mandelbrot.adl.input"

extends = "gridcomp.PrimitiveController">

<interface signature = "gridcomp.example.passive.mandelbrot.LineServer"

role = "client" name = "lineserver-client"/>

<content class="gridcomp.example.passive.mandelbrot.Input"/>

<virtual-node name="master-node" cardinality="single"/>

</definition>

The worker component The ADL of the worker component provided by the user is defined
as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.passive.mandelbrot.adl.lineserver"

extends="gridcomp.PrimitiveController">

<interface signature="gridcomp.example.passive.mandelbrot.LineCollector"

role="client" contingency="optional" name="collector-client"/>

<interface signature="gridcomp.example.passive.mandelbrot.LineServer"

role="server" name="lineserver-server"/>

<content class="gridcomp.example.passive.mandelbrot.LineServerImpl"/>

<virtual-node name="slave-1" cardinality="single"/>

</definition>

GridCOMP FP6-034442 page 22 of 31 D.NFCF.04

It extends the gridcomp.PrimitiveController in order to inherit all the GCM controller
and it defines on which virtual node the worker has to be placed at deployment time.
For each tasks received, the lineserver component performs some iterations and returns to
the output component the result computed. The application ends when all the points of the
Mandelbrot set have been computed.

Each worker is coupled with an ADL descriptor needed to express how to map the application
onto the target architecture. In the example above, the ADL descriptor is represented by the
slave-1.fractal file, that appears as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<definition name="gridcomp.example.passive.mandelbrot.adl.slaves.slave-1"

extends="gridcomp.example.passive.mandelbrot.adl.lineserver">

<virtual-node name="slave-node-1" cardinality="single"/>

</definition>

As it can be seen, the file simply maps a specific worker instance on a given virtual node of
the ProActive platform.

The farm skeleton As we could expect, the farm component has the following definition:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.passive.mandelbrot.adl.farm"

extends="gridcomp.controller.MonitorBalanceFarmController">

<interface signature="gridcomp.example.passive.mandelbrot.LineCollector"

role="client" contingency="optional" name="collector-client"/>

<interface signature="gridcomp.example.passive.mandelbrot.LineServer"

role="server" name="lineserver-server"/>

<component name = "server"

definition = "gridcomp.example.passive.mandelbrot.adl.lineserver"/>

<binding server = "this.collector-client"

client = "server.collector-client"/>

<binding client = "this.lineserver-server"

server = "server.lineserver-server"/>

<virtual-node name="master-node" cardinality="single"/>

<beske xmlFile="src/gridcomp/example/passive/mandelbrot/farm.properties"/>

</definition>

The component ADL definition is enriched with the new GCM element, BeSke. Such element
points to an existing file which configures this particular instance of the behavioural skeleton.
In particular, it specifies the directory where the ADL deployment descriptors describing the
mappings between workers and virtual nodes and the pathname of the XML deployment file to
be used when creating a new worker instance. This is the content of the BeSke file related to
the π example

adl.dir = gridcomp/example/passive/pi/adl/slaves

xml.file = ./distrib-deployment.xml

GridCOMP FP6-034442 page 23 of 31 D.NFCF.04

5.1.3 Running the example

Since the application exploits a passive autonomicity, users do not submit any QoS contract
to the application. However, the application provides a GUI allowing to drive the autonomic
behaviour through a control panel offering a set of buttons for increasing/decreasing the number
of workers, query some monitoring information and activate the load balancing among workers
after a reconfiguration (see Fig. 5). The user can take such decisions by monitoring the configu-

Figure 5: Control panel driving the passive autonomicity of the Mandelbrot application.

ration and the performance of the application through a monitoring window on his desktop (see
Fig.7) showing how, as the number of workers changes in time, the throughput of the application
increases/decreases. A picture of the graphical output of the application is shown in Fig. 6,

Figure 6: Mandelbrot application output.

where an animated window incrementally shows the fractal image derived from the calculation.
The images has been captured from an execution running on a cluster called pianosau and the

GridCOMP FP6-034442 page 24 of 31 D.NFCF.04

Figure 7: The monitoring window of the Mandelbrot application shows how, as the number of
workers change in time, the throughput of the application increases/decreases.

application has been deployed to run on 8 nodes of the cluster called u2-u10, plus pianosau
itself as local machine. In order to run the application, from the GridComp-Examples directory,
the user has to type:

~/gridcomp/GridComp-Examples/ > ant remote-deploy-passive-mandelbrot

for a remote execution, or

~/gridcomp/GridComp-Examples/ > ant local-deploy-passive-mandelbrot

for running the application on the local machine.

5.1.4 Guidelines for using the farm skeleton at passive level

The steps a user must follow in order to successfully use the farm skeleton can be summarised
as follows:

1. provide the root component description as an extension of the gridcomp.CompositeController
(and any other sub-component he/she wants to use);

2. provide the worker component description as an extension of the gridcomp.PrimitiveController;
for each instanciable worker, a descriptor for the deployment phase must be provided.

3. include in his application definition of the farm skeleton as an extension of the
gridcomp.controller.MonitorBalanceFarmController as showed in the example above

4. providing the farm.properties file and set of ADL files describing the map between each
instanciable worker and the virtual nodes

5.2 Farm skeleton at active level: the DiCom use-case

In this section we will show an example of active autonomicity involving the farm behavioural
skeleton, i.e. an application in which the non-functional strategies related to the reconfiguration
of the composite are taken by a manager belonging to the skeleton itself.
GridCOMP FP6-034442 page 25 of 31 D.NFCF.04

5.2.1 Semantics

In order to illustrate how active autonomicity works, we will show how the so called DiCom
use-case has been implemented by exploiting the farm behavioural skeleton provided by the
autonomic framework. The use-case is related to an application for the recognition of cancer
areas to be detected on a stream of images representing mammary x-rays.

The use-case will show how active autonomicity is provided by the farm skeleton and we will
highlight the differences with respect to the passive case.

5.2.2 The main application structure

The root component is described by the following ADL file that takes the QoS contract as
parameter, as already shown in Section 4.1:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd">

<definition name="gridcomp.example.active.dicom.adl.root"

extends="gridcomp.CompositeController"

arguments="contractFile">

<interface signature="gridcomp.example.active.dicom.Master"

role="server" name="do"/>

<component name="client"

definition="gridcomp.example.active.dicom.adl.master"/>

<component name="farm"

definition="gridcomp.example.active.dicom.adl.farm($(contractFile))"/>

<component name="output"

definition="gridcomp.example.active.dicom.adl.output"/>

<binding client="this.do"

server="client.do"/>

<binding client="client.work"

server="farm.work"/>

<binding client="farm.send"

server="output.send"/>

<virtual-node name="master-node" cardinality="single"/>

</definition>

The component encapsulates three components: the client component producing the stream
of images, the farm component evaluating them and the output component that is in charge of
providing a graphical output of the elaboration.

Although the farm is not in the scope of the user responsibility, we will show how the farm
component is structured in order to ease the explanation. The farm component has the following
description

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://gridcomp/adl/gridcomp.dtd"

arguments="contractFile">

<definition name="gridcomp.example.active.dicom.adl.farm"

extends="gridcomp.controller.MonitorBalanceFarmController">

<interface name="work" role = "server"

signature = "gridcomp.example.active.dicom.Worker" />

<interface name="send" role = "client"

signature = "gridcomp.example.active.dicom.Collector" />

GridCOMP FP6-034442 page 26 of 31 D.NFCF.04

<component name="worker"

definition = "gridcomp.example.active.dicom.adl.worker"/>

<component name="manager"

definition="gridcomp.manager.farm.adl.AutonomicManager(${contractFile})" />

<binding client="manager.client-autonomic-controller"

server = "this.autonomic-controller"/>

<binding client="manager.client-beske-attribute-controller"

server = "this.beske-attribute-controller"/>

<binding client="this.work" server = "worker.work"/>

<binding client="worker.send" server = "this.send"/>

<virtual-node name="master-node" cardinality="single"/>

<beske xmlFile="src/gridcomp/example/active/dicom/farm.properties"/>

</definition>

The farm is parametric with respect to the QoS contract (the JBoss rule file) that will be
given to the AutonomicManager as input file. The manager is bound to the GCM controllers of
the farm and the skeleton is provided with its own file of properties defined in farm.properties,
specifying the ADL file describing the worker and the path to the XML deployment file. The

Figure 8: A perspective on the autonomic behaviour of the DiCom use-case. The through-
put monitor window shows the contractually required throughput (dashed line) and the actual
throughput of the farm along the execution. The worker monitor shows the how the number
of worker vary (increase in this case) to reflect throughput variation (drop). In the experiment
the throughput drop is caused by an additional load happening in the platforms running farm
workers (here artificially induced by an external application).

contract file has the following structure:
GridCOMP FP6-034442 page 27 of 31 D.NFCF.04

package gridcomp.computeTaskMonitor

import gridcomp.manager.beans.*;

import gridcomp.manager.operations.*;

import gridcomp.operation.*;

[methodMonitor="computeTask"]

rule "CheckRate"

when

$arrivalBean : DepartureRateBean(value < 1.2)

then

$arrivalBean.fireOperation(ManagerOperation.ADD_EXECUTOR);

$arrivalBean.fireOperation(ManagerOperation.BALANCE_LOAD);

end

rule "StartingParDegree"

when

$parDegree: NumWorkerBean(value < 4)

then

$parDegree.fireOperation(ManagerOperation.ADD_EXECUTOR);

$parDegree.fireOperation(ManagerOperation.ADD_EXECUTOR);

$parDegree.fireOperation(ManagerOperation.ADD_EXECUTOR);

$parDegree.fireOperation(ManagerOperation.BALANCE_LOAD);

end

The observed method, computeTask belongs to the worker’s interface:

package gridcomp.example.active.dicom;

public interface Worker {

public final static String ITF_NAME = "work";

public void computeTask(byte[] data, int idx);

}

Two rules have been defined on the manager, implementing two different events to check and two
different actions to take. Both the Java Beans involved evaluate a given condition by querying
the autonomic behaviour controller (ABC) provided with the farm. The first rule assesses that
if the departure rate of the tasks (given by the DepartureRateBean Java Bean) is lower than a
specified threshold, then two actions must be taken at passive level: the instantiation of a new
worker followed by the load balancing of the tasks between the existing workers.
The second rule assesses that if the number of workers (given by the NumWorkerBean Java Bean
is lower than a given threshold, two workers have to be added to the farm and their tasks loads
must be balanced.

As a consequence of this QoS contract, the manager drives the execution so that the number
of workers encapsulated by the farm is at least 4 and, however, such number is kept sufficiently
high to guarantee a given performance expressed in terms of departure rate.

5.2.3 Running the example

The execution of the DiCom use-case is graphically supported by a GUI showing two windows:
on the first window (Fig.9) , the result of the execution can be appreciated as a sequence x-ray
images, whose scroll speeds as the overall performance of the application improves.

On the second window (Fig. 8), two monitoring charts about throughput and number of
workers involved, give the possibility to the user to follow the application behaviour under an
autonomic perspective. In particular, the animated window shows how, as the number of workers
changes in time, the throughput of the application increases/decreases.
The pictures have been captured from an execution running on a cluster called pianosau and
the application has been deployed to run on 8 nodes of the cluster called u2-u10, plus pianosau

GridCOMP FP6-034442 page 28 of 31 D.NFCF.04

Figure 9: The sequence of x-ray images produced by the application.

itself as local machine. In order to run the application, from the GridComp-Examples directory,
the user has to type:

~/gridcomp/GridComp-Examples/ > ant remote-deploy-dicom

for a remote execution, or

~/gridcomp/GridComp-Examples/ > ant local-deploy-dicom

for running the application on the local machine.

5.2.4 Guidelines for using the farm skeleton at active level

The steps a user must follow in order to successfully use the farm skeleton are the same already
listed in 5.2.4. However, in this case the user must take care of

1. selecting a version of the farm that includes the manager as an inner component

2. provide the JBoss rules file to address the monitoring issues and pass it to the root com-
ponent as a parameter at running time.

6 Conclusion and work in progress

We presented a set of use-cases showing how the autonomic features within the GCM implemen-
tation given on top of ProActive 3.9 can be exploited in a parallel programming application. As
the traditional skeleton paradigm, the basic idea is to provide the user with a set of behavioural
skeleton, i.e. components whose non-functional behaviour is pre-defined, while the functional
behaviour is parametrically specified by the user.

Since the non-functional behaviour of such component is pre-defined, we are able to provide a
manager driving the behaviour with respect to the user’s needs specified through a QoS contract
at running time.

The document presents two use-cases related to the data parallel skeleton and two use-cases
related to the farm skeleton, in which passive and active autonomicity has been exploited.
GridCOMP FP6-034442 page 29 of 31 D.NFCF.04

We are currently working on allowing the user (or the framework programmer) to customise
its behavioural skeletons. In particular, in the next future he/she will be able to:

• extending or overwriting the manager of the provided skeleton in order to add/change
manager capabilities while keeping the skeleton structure and behaviour;

• adding new autonomic operation to both the active and the passive level in order to increase
the adaptive power of pre-existent or new skeletons;

• adding new controllers in order to wide the spectrum of autonomic operations at passive
level as well as monitoring capabilities.

Besides the new Priority Controller introduced in ProActive3.9 we introduced some new con-
trollers for components to implement the effector and the sensor of the behavioural skeletons (as
an example the monitor controller). These controllers strictly depend on the Proactive implemen-
tation of components, and they are generic enough to be reusable by other BeSke programmers
(exploiting GCM/PROACTIVE implementation). In the future, we plan to substitute such
controllers with the ones provided by our project partners in the next months.

GridCOMP FP6-034442 page 30 of 31 D.NFCF.04

References

[1] Marco Aldinucci, Sonia Campa, Marco Danelutto, Patrizio Dazzi, Peter Kilpatrick, Domenico
Laforenza, and Nicola Tonellotto. Behavioural skeletons for component autonomic manage-
ment on grids. In CoreGRID Workshop on Grid Programming Model, Grid and P2P Systems
Architecture, Grid Systems, Tools and Environments, Heraklion, Crete, Greece, June 2007.

[2] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi, Patrizio Dazzi,
Domenico Laforenza, Nicola Tonellotto, and Peter Kilpatrick. Behavioural skeletons in GCM:
autonomic management of grid components. In Didier El Baz, Julien Bourgeois, and Francois
Spies, editors, Proc. of Intl. Euromicro PDP 2008: Parallel Distributed and network-based
Processing, pages 54–63, Toulouse, France, February 2008. IEEE.

[3] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable D.NFCF.01
– Non functional component subsystem architectural design, June 2007. http://gridcomp.
ercim.org/images/stories/Deliverables/d.nfcf.01-final.pdf.

[4] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable D.PM.04
– Basic Features of the Grid Component Model (assessed), February 2007. http://www.
coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf.

[5] JBoss rules home page. http://www.jboss.com/products/rules, 2008.

[6] ObjectWeb Consortium. The Fractal Component Model, Technical Specification, 2003.

[7] ProActive home page, 2006. http://www-sop.inria.fr/oasis/proactive/.

[8] Thomas Weigold, Peter Buhler, Jeyarajan Thiyagalingam, Artie Basukoski, and Vladimir
Getov. Advanced grid programming with components: A biometric identification case study.
In Proc. of the 32nd Intl. Computer Software and Applications Conference (COMPSAC),
Turku, Finland, 2008. IEEE. To appear.

GridCOMP FP6-034442 page 31 of 31 D.NFCF.04

